Industrial pressure and vacuum switches XMLA, XMLB, XMLC, XMLD, 9012G and 9016G

Catalog

Telemecanique Sensors

Contents

Industrial pressure and vacuum switches XML, 9012G and 9016G

Selection guide	pages 2 and 3
Selecting a pressure switch	pages 4 and 5
Terminology	pages 6 and 7

XML electromechanical pressure and vacuum switches

Introduction	pages 8 to 18
Selection and specifications	pages 19 to 56
Accessories	page 57
Dimensions	pages 58 to 61
Materials in contact with fluid	pages 62 and 63

9012G pressure switches

Introduction	pages 64 to 66
Technical overview	. pages 66 to 69
Renewal parts	page 75
Selection and specifications	. pages 70 to 77
Modifications	page 77
Dimensions	. pages 80 to 82

9016G vacuum switches

Selection and specifications	pages 78 and 79
Modifications	pages 79 and 83
Dimensions	page 83

	Product reference index	page	84
--	-------------------------	------	----

Selection guide

Electromechanical pressure and vacuum switches

XML range

Applications	Type of installation	Control circuits					
	Media controlled	Air, water, hydraulic	Air, water, hydraulic oils, corrosive fluids, viscous products				
	Type of operation	Fixed differential: detection of a single threshold	Adjustable differer two thresholds	ntial: regulation between	Dual-stage switches fixed differential, detection at each threshold		
Fluid characterist	tics	Air, fresh water, sea w depending on model	Air, fresh water, sea water, corrosive fluids, viscous products, up to 320 °F (160 °C) depending on model		°F (160 °C)		
Size (pressure ra	nge)	–1 to 500 bar (–14.5 to	–1 to 500 bar (–14.5 to 7250 psi)				
Type of contacts		1 C/O single-pole, sna	ap action	2 C/O single-pole, simultaneous, snap action	2 C/O single-pole, staggered, snap action		
Degree of protect	ion	IP66 with terminal cor IP65 with plug-in conr		IP66 with terminal connections	IP66 with terminal connections IP65 with plug-in connector		
Agency listings		CCC, BV, cULus					
Electrical connec	tion	Screw terminals: 1 tap or PG 13.5 conduit/ca Connector: DIN 43650	ble entry.	20 x 1.5 mm for ISO condu	it/cable;		
Pressure connec	tion	G 1/4 (BSP female), 1	/4" NPTF, PT 1/4 (JIS E	30203)			
Type reference		XMLA	XMLB	XMLC	XMLD		
Pages		21 to 58					

fluid entries, consult our Customer Care Center.

Selection guide

Industrial pressure and vacuum switches

9012G and 9016G ranges

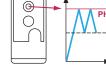
Applications	Type of installation	Control circu	uits				Power circuits
	Media controlled	Air, water, hy	Air, water, hydraulic oils (1), gases and steam				
	Type of operation	Fixed differential: detection of a single threshold	Adjustable differential: regulation between two thresholds	Differential- pressure (change in the difference between two pressures)	Dual-stage switches: Fixed differential, detection at each threshold	Vacuum switches for control circuits	Vacuum switches for power circuits
Fluid characteris	stics	Up to 248 °F	(120 °C)				
Size (pressure ra	ange)		0.2–675 psi on fal ed: 20–9,000 psi	lling pressure on falling pressu	re	0–28.7 inHg	0–25 inHg
Type of contacts		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		DPST (SPDT for Form H)			
Degree of protec	tion	NEMA 1, 4, 4,	X,13, 7 or 9, dep	ending on model			
Agency listings		UL Listed and	I CSA certified as	s industrial contro	l equipment		
Electrical connection (enclosed device		only on NEM) M20; 3/4"-14 NP unthreaded.	TF available	1/2"-14 NPT	3 x 1/2" conduit entry, unthreaded
Pressure connec	ction	G1/4 (BSP) fe 1/2"-14 NPT	emale, 1/4"-18 N	PTF, 1/4-18 NPT	internal or exter	rnal (depending	on model),
Type reference		9012GD, 9012GE, 9012GF, 9012GR, 9012GT	9012GA, 9012GB, 9012GC, 9012GN, 9012GP,	9012GGW, 9012GHW	9012GKW, 9012GMW	9016GAW	9016GVG
			9012GQ				

Telemecanique Sensors does not have test data to support or predict fluid bypass with oils less than SAE 30W.

Selecting a pressure switch

Industrial pressure switches

Steps for selecting a pressure switch



The deciding factors in the selection of a pressure switch for use on control circuits(1) depend on the requirements of the application. Consider the following requirements to help determine the appropriate commercial reference for your application.

1. Setpoints: Do you want to control/monitor one setpoint or two?

One setpoint: fixed differential

2. Fluids: What fluids do you want to control?

 Hydraulic oil, air, fresh water ≤ 70 °C (158 °F) • Hydraulic oil, air, fresh water ≤ 160 °C (320 °F)

- Sea water ≤ 70 °C (158 °F)
- Sea water ≤ 160 °C (320 °F) ٠
- Steam
- Corrosive fluid ≤ 160 °C (320 °F) •

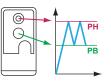
Two setpoints: adjustable differential

Viscous fluid ≤ 160 °C (320 °F)

Ensure that the wetted parts of the switch are compatible with the system fluid.

3. Pressure range: What pressure range does the system experience? Note: Select pressure settings that fall within the middle 80% of the pressure range. The pressure applied during a normal cycle should never exceed the maximum range value listed for the switch. Pressure surges should be less than the maximum allowable pressure listed for the switch.

Rated pressure				
XML		9012G / 9016 G (a)		
psi	bar	psi bar		
-14.5 to -4.06	-1 to -0.28	0 to 28 inHg		
-14.5 to -2.03	-1 to -0.14	0 to 25 inHg		
-2.9 to -0.029	-0.2 to -0.02	5 to 25 inHg (9016GVG only)		
-7.25 to 72.5	-0.5 to 5	0.2 to 10 0.01 to 0.69		
0 to 0.725	0 to 0.05	1 to 40 0.07 to 2.76		
0 to 5.075	0 to 0.35	1.5 to 75 0.10 to 5.17		
0 to 14.5	0 to 1	3 to 150 0.21 to 10.34		
0 to 36.25	0 to 2.5	5 to 250 0.34 to 17.24		
0 to 58	0 to 4	13 to 425 0.90 to 29.30	1	
0 to 145	0 to 10	20 to 675 1.38 to 46.54		
0 to 290	0 to 20	20 to 1000 1.38 to 68.95		
0 to 507.5	0 to 35	90 to 2900 6.21 to 199.9	5	
0 to 580	0 to 40	170 to 5600 11.72 to 386.	11	
0 to 1015	0 to 70	270 to 9000 18.62 to 620.	.53	
0 to 2320	0 to 160	0 to 75 (b) 0 to 5.17 (b)		
0 to 4350	0 to 300	0 to 175 (b) 0 to 12.07 (b)		
0.4- 7050	0.4- 500	0 to 500 (b) 0 to 34.47 (b)	1	
0 to 7250	0 to 500	0 to 5000 (b) 0 to 344.74 (b)	b)	
(a) For 9016G vacuum switches, the unit of rated pressure is inHg.				


(b) Pressure switches for differential-pressure operation.

- 4. Surges: How frequent are surges in your system, and what is their maximum pressure level? Applications experiencing frequent or high-pressure surges may require a device with a higher pressure range.
- 5. Differential: The required differential may exclude some pressure range choices.

(1) For switches used on power circuits, see catalog 9013CT9701, Commercial Pressure Switches, Class 9013 Types F and G.

Fixed differential

Adjustable differential

Industrial pressure switches

- 6. Enclosure: What type of enclosure do you need?
 - Open style
 - NEMA Type 1

- NEMA Type 7, 9
- NEMA Type 4, 4X, 13 / IP66, IP65
- 7. Output: What output type do you require?
 - SPDT contacts, 1 N/O, 1 N/C

ISO M20 metric threads

- 2 SPDT contacts, 1 N/O, 1 N/C •
- Dual stage, 1 SPDT contact each stage, 1 N/O, 1 N/C •
- Horsepower rated, 9016GVG vacuum switch only ٠
- 8. Electrical connection: What type of electrical connection do you require?
 - ½"- 14 NPTF

- ³/₄"-14 NPTF (available only on NEMA 7 & 9)
- No threaded connection (open style or NEMA 1 only)
- 9. Pressure connection: What type of pressure connection do you require?
 - ¼"- 18 NPTF (female)
- 7/16"-20 UNF-2B
- 1/2" 14 NPT
- G 1/4 BSP (female) metric thread

10. Special features: Do you require any special features?

See the modification table on page 8/91 for available modifications for 9012 and 9016G pressure switches. (Form designations are added to the end of the part number of the standard device for these products.) Some examples are:

- Pilot light .
- Prewired receptacles
- External range adjustment
- Range scale window
- Special factory pressure settings
- Pressure connections

When switches must be factory set and only one setting is identified, specify whether this setting is on rising or falling pressure. See "Special factory setting specified (If indicating only one special setting, specify whether this setting is on increasing or decreasing pressure.)" in the modification table on page 8/91.

11. System response time

If system response time is critical, select a switch with a volumetric displacement that is compatible with the overall system. See the table below .

Volumetric displacement of 9012G pressure switches

Class 9012 Type	Volumetric displacement (1) (in ³)	Volumetric displacement (1) (cm³)		
GAR, GAW, GDR, GDW-1& 21	0.20774	3.40422		
GAR, GAW, GDR, GDW-2 & 22	0.07040	1.15385		
GAR, GAW, GDR, GDW-4 & 24	0.04320	0.70805		
GAR, GAW, GDR, GDW-5 & 25	0.02144	0.35140		
GAR, GAW, GDR, GDW-6 & 26	0.01376	0.22553		
GBR, GBW, GER, GEW-1 & 21	0.00200	0.13112		
GBR, GBW, GER, GEW-2 & 22	0.00512	0.08392		
GCR, GCW, GFR, GFW-1 & 21	0.00320	0.05245		
GCR, GCW, GFR, GFW-2 & 22	0.00117	0.01922		
GCR, GCW, GFR, GFW-3 & 23	0.00060	0.00924		
GCR, GCW, GFR, GFW-4 & 24	0.00037	0.00612		

(1) Figures shown are total displacement. When the switch is operated between settings only, displacement is 1/3 of the values shown.

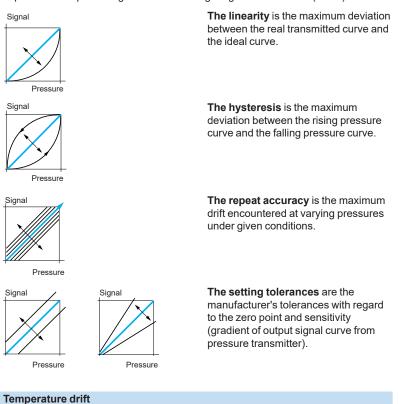
- Type 13 (PG 13.5) metric threads
 - PT ¼ (JIS B0203)

Industrial pressure switches

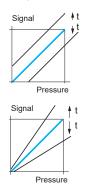
Terminology

Measuring range

The measuring range (MR) of a pressure sensor corresponds to the difference between the upper and lower values measured by the load cell. It ranges between 0 and the pressure corresponding to the size of the sensor.


Operating range

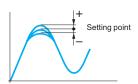
The operating range of a pressure transmitter corresponds to its measuring range. Within this range, its analog output signal varies between 4 and 20 mA or 0 and 10 V, and is proportional to the measured pressure.

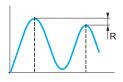

The operating range of a pressure or vacuum switch is the difference between the values of the minimum low setpoint (PB) and the maximum high setpoint (PH).

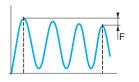
Precision

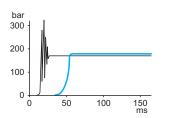
This includes linearity, hysteresis, repeat accuracy, and setting tolerances. It is expressed as a percentage of the measuring range of the load cell (%MR).

The precision of a pressure sensor is susceptible to variation due to the operating temperature.

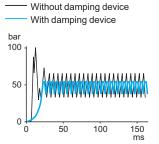

Zero point drift, proportional to the temperature, is expressed as %MR/°C.


Sensitivity drift, proportional to the temperature, is expressed as %MR/°C.




Terminology (continued)

Industrial pressure switches



Example 1: With destructive (burst) pressure level

Example 2: With destructive (burst) pressure level and destructive pressure oscillations

Terminology (continued)

Switching point on rising pressure (PH)

This is the upper pressure setting at which the output of the electronic pressure or vacuum switch changes state on rising pressure.

Switching point on falling pressure (PB)

This is the lower pressure setting at which the output of the electronic pressure or vacuum switch changes state on falling pressure.

Differential

This is the difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB). The low point can be set at the values indicated on the operating curves shown on the product pages.

Switches with fixed differential

Depending on the switch, either the high or low operating point is adjustable, and the other operating point follows. The window is fixed.

Switches with adjustable differential

An adjustable differential allows independent setting of both operating points.

Spread

For dual-stage switches, the spread indicates the difference between the two operating points on rising pressure (PH2 and PH1) and, for vacuum switches, the difference between the two operating points on falling pressure (PB2 and PB1).

Differential-pressure sensing

Switches for differential-pressure sensing measure the difference between two pressures.

Size

Pressure transmitters and pressure switches

This is the maximum value of the operating range.

- Vacuum transmitters and vacuum switches
- This is the minimum value of the operating range.

Accuracy (switches with setting scale)

The tolerance between the point at which the switch actuates its contacts and the value indicated on the setting scale. Where very high setting accuracy is required (initial installation of the product), it is recommended that you use separate measuring equipment (pressure gauge, etc.).

Repeat accuracy

This is the variation in the operating point between several successive operations, or the tolerance between two consecutive switching operations.

Drift (F)

The tolerance of the operating point throughout the entire service life of the switch.

Maximum allowable pressure

The maximum value of an accidental pressure surge of very short duration (a few milliseconds).

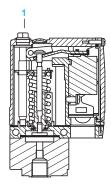
Maximum permissible accidental pressure

This is the maximum pressure (excluding pressure surges) that the sensor can occasionally withstand without permanent damage.

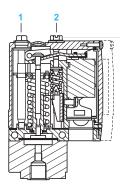
Maximum allowable pressure per cycle (Ps)

The maximum pressure level per cycle that the switch can withstand for optimum service life.

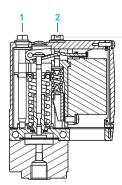
Surge


A surge is a high rate of rise in pressure, normally of short duration, caused by starting a pump or by opening and closing a valve. Depending on frequency and duration, surge can reduce service life. Extremely high rates of rise in pressure can be damaging even if they are within the limits of the maximum allowable pressure. **Destruction pressure**

Also called *burst pressure*, the destruction pressure is the pressure value which, if exceeded, is likely to cause serious damage to the sensor—such as leaking, bursting, or permanent damage.



XML range


Introduction

XMLA

XMLB, XMLC

XMLD

XML pressure and vacuum switches for control circuits are used to control the pressure of hydraulic oils, fresh water, sea water, air, steam, corrosive fluids, or viscous products, up to 7250 psi (500 bar).

XMLA pressure and vacuum switches have a fixed differential and are for detection of a single threshold. They incorporate a 1 C/O single-pole contact.
 XMLB pressure and vacuum switches have an adjustable differential and are for regulation between two thresholds. They incorporate a 1 C/O single-pole contact.
 XMLC pressure and vacuum switches have an adjustable differential and are for regulation between two thresholds. They incorporate two C/O single-pole contact.
 XMLD pressure and vacuum switches are dual-stage switches, each stage with a fixed differential, and are for detection at each threshold. They incorporate two C/O single-pole contacts (one per stage).

Setting

XMLA: pressure and vacuum switches with fixed differential

Rising pressure—Operating point PH is set by adjusting the red screw 1.
 Falling pressure—Operating point PB is not adjustable.

The difference between the trip and reset points of the contact is the inherent differential of the switch (contact differential, friction, etc.).

XMLB and XMLC: pressure and vacuum switches with adjustable differential

When setting the pressure and vacuum switches, first adjust the operating point on rising pressure (PH), then the operating point on falling pressure (PB).

Rising pressure—Operating point PH is set by adjusting the red screw 1.

Falling pressure—Operating point PB is set by adjusting the green screw **2**.

XMLD: dual-stage pressure and vacuum switches with fixed differential for each threshold

Operating point on rising pressure of stage 1 and stage 2

■ First stage operating point on rising pressure (PH1) is set by adjusting the red screw 1

■ Second stage operating point on rising pressure (PH2) is set by adjusting the blue screw 2.

Operating point on falling pressure

The operating points on falling pressure (PB1 and PB2) are not adjustable. The difference between the trip and reset points of each contact is the inherent differential of the switch (such as contact differential or friction).

Introduction (continued)

Electromechanical pressure and vacuum switches

XML range

Specifications					
Environmental specifications					
Conformity to standards	UKCA, IEC/EN/UL/CSA 60947-5-1				
Product certifications	CCC, BV, cULus				
Ambient air temperature, °F (°C)	operation: -13 to +158 (-25 to +70). Storage: -40 to +158 (-40 to +70)				
Fluids or products controlled	draulic oils, air, fresh water, sea water, $32-320$ °F (0 to 160 °C), depending on r am, corrosive fluids, viscous products, $32-320$ °F (0 to 160 °C), depending on				
Materials	se: zinc alloy. Component materials in contact with fluid: see page 62.				
Operating position	positions				
Vibration resistance	n (30–500 Hz) conforming to IEC 68-2-6 ept XMLeL35eeee, XMLe001eeee and XMLBM03eeee: 2 gn				
Shock resistance	gn conforming to IEC 68-2-27 except XMLeL35eeee, XMLe001eeee and XM	LBM03••••: 30 gn			
Electric shock protection	ss I conforming to IEC 1140				
Degree of protection	ew terminal models: IP66 conforming to IEC/EN 60529 nnector models: IP65 conforming to IEC/EN 60529				
Operating rate (operating cycles/minute)	ton version switches: up to 60 cycles/minute for temperatures greater than 32 phragm version switches: up to 120 cycles/minute for temperatures greater th				
Repeat accuracy	%				
Pressure connection (1)	G 1/4 (BSP female) //4"-18 NPTF female PT 1/4 (JIS B0203).				
Electrical connection (1) for screw terminal models	 1/2" NPT electrical connections ISO M20 x 1.5 tapped entry DIN Pg 13.5 (n° 13) tapped entry Connector models, either M12 or DIN 43650 A: please consult our Customer Care Center. 				
Contact block specifications					
Rated operational specifications	AC-15; B300 (Ue = 240 V, le = 1.5 A - Ue = 120 V, le = 3 A) DC-13; R300 (Ue = 250 V, le = 0.1 A)				
Rated insulation voltage	= 500 V conforming to IEC/EN = 300 V conforming to UL/CSA				
Rated impulse withstand voltage	np = 6 kV				
Type of contacts Silver tipped contacts	LA and XMLB: 1 C/O single-pole contact (4 terminal), snap action LC: 2 C/O single-pole contacts (8 terminal), simultaneous, snap action LD: 2 C/O single-pole contacts (8 terminal), staggered, snap action				
Short-circuit protection	A cartridge fuse type gG (gl)				
Connection	ew clamp terminals. Clamping capacity, min: 1 x 0.2 mm², max: 2 x 2.5 mm²				
Electrical durability Utilization categories AC-15 and DC-13	LA and XMLBXMLC and XMLDsupply \sim 50/60 HzAC supply \sim 50/60 Hz \sim Inductive circuit, Ithe = 10 Arm Inductive circuit, Ith				
Operating rate: 3600 operating cycles/hour Load factor: 0.5	7 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	12/24 V 48 V 48 V 110 V 2 3 4 5 10 Current in A 5 million operating cycles			
		24 48 120			
	<u> </u>	10 7 4			
(1) See page 18 "Interpreting the reference for YMI	ices" for more information on specifying the electrical and pressure connection				

(1) See page 18, "Interpreting the reference for XML Devices" for more information on specifying the electrical and pressure connections.

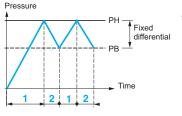
XML range

Function

Pressure and vacuum switches control or regulate pressure or vacuum levels in hydraulic or pneumatic systems. They transform the pressure change into a digital electrical signal when the preset operating points are reached.

Switches for control circuits

Switches with control-duty rated electrical contacts, designed for control of contactors, relays, power valves, PLC inputs, etc.


Switches for power circuits

Switches with power electrical contacts (1, 2, or 3 pole) designed for direct switching of single-phase or three-phase motors (pumps, compressors, etc.).

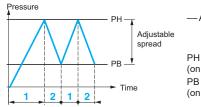
Pressure switch operating principle

Fixed Differential: Detection of a Single Threshold

Fixed differential switches have a single adjustable setting point (either PH or PB). The differential between the high and low points (PH–PB) depends on the construction of the switch. It is not adjustable.

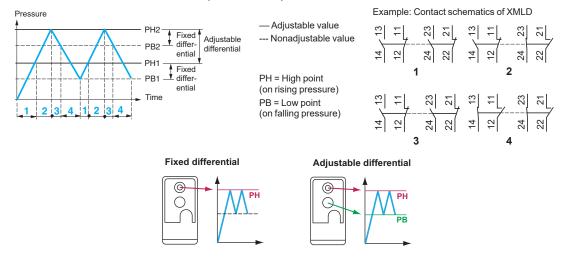
--- Nonadjustable value PH = High point

- Adiustable value


(on rising pressure) PB = Low point (on falling pressure)

Adjustable Differential: Regulation between Two Thresholds

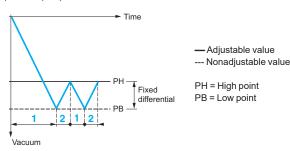
Adjustable differential switches have setting points for both the high point (PH) and the low point (PB). Both of these points can be independently adjusted.

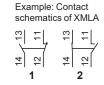


 Adjustable value
 PH = High point (on rising pressure)
 PB = Low point (on falling pressure)

Dual-Stage: Detection of Two Thresholds

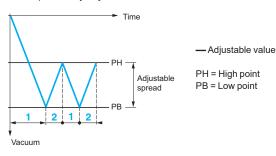
Dual-stage switches allow two distinct levels of control to be monitored with one device. Each stage allows detection of a single threshold with a single setting point (fixed differential). Both these points can be independently adjusted. However, for both stages, the differential between the high point and the low point (PH1–PB1 and PH2–PB2) is fixed and depends on the construction of the switch.




XML range

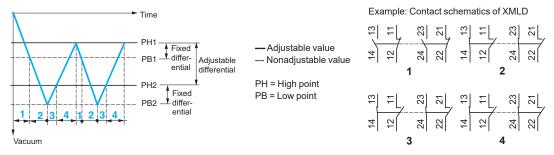
Vacuum switch operating principle

Detection of a single threshold


The switches for detection of a single threshold (fixed differential) have a single adjustable setting point (PH). The differential between the high and low points (PH–PB) depends on the inherent characteristics of the switch. It is not adjustable.

Regulation between two thresholds

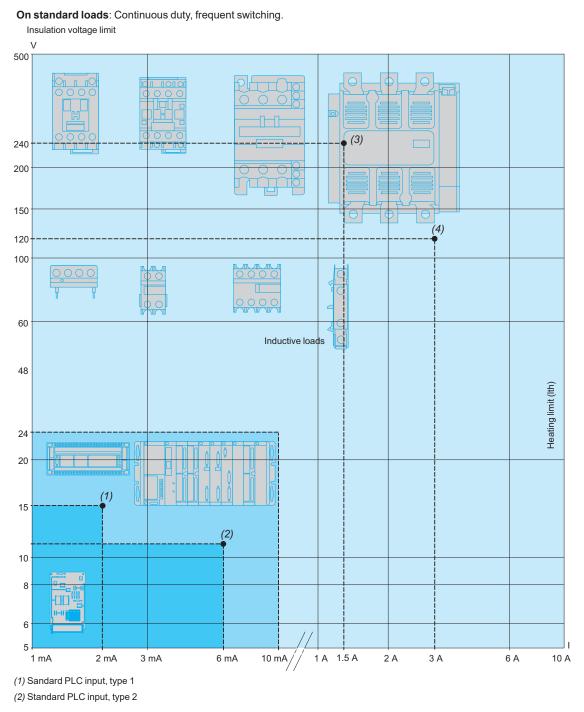
The switches for regulation between two thresholds (adjustable differential) have both a high point setting (PH) and a low point setting (PB). Both of these points can be independently adjusted.


Example: Contact schematics of XMLB

Detection of two thresholds

The dual-stage switches, for detection at each threshold, have an adjustable high point setting for each stage (PH1 and PH2). Both of these points can be independently adjusted.

For both stages, the differential between the high point and the low point (PH1–PB1 and PH2–PB2) depends on the inherent characteristics of the switch. It is not adjustable.


Maximum allowable accidental pressure

The maximum accidental pressure of XML switches is equal to at least 2.25 times the switch size.

If accidental overpressures occur and their duration is less than 50 milliseconds, the pressure damping device incorporated in the XML switches (sizes 10 bar and greater) reduces the effect.

XML range

Application range of pressure and vacuum switches types XML, XMA and XMX, for control circuits

(3) Switching capacity, utilization category AC-15, DC-13

B300	240 V	1.5 A
R300	250 V	0.1 A

(4) Switching capacity, utilization category AC-15, DC-13

B300	120 V	3 A
R300	125 V	0.22 A

PLC: programmable logic controller

On small loads: The use of electromechanical pressure and vacuum switches with programmable logic controllers is becoming more prevalent. On small loads, the switches maintain a failure rate of less than 1 for 100 million operating cycles. Results may vary depending on application.

XML range

Selecting the switch size

After establishing the type of switch required for the application (single threshold detection or regulation between two thresholds), the selection of its size depends on the following criteria:

- the differential: difference between the high point (PH) and the low point (PB),
- the maximum pressure allowable per cycle,
- repeat accuracy, precision and minimum drift.

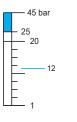
Selecting a fixed differential pressure switch for detecting a single threshold

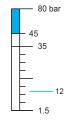
20 bar

6

Main criterion: minimum differential

Example: for a selected high point (PH) of 7 bar





XMLA035 ••• Differential = 2 bar

XMLA010 Differential = 0.5 bar

Select an XMLA010 •• (the lowest size) Main criterion: tolerance to overpressures Example: for a selected high point (PH) of 12 bar

XMLA020 ••• Allowable accidental overpressure = 45 bar

XMLA035 ••• Allowable accidental overpressure = 80 bar

Select an XMLA035 •• (the highest size)

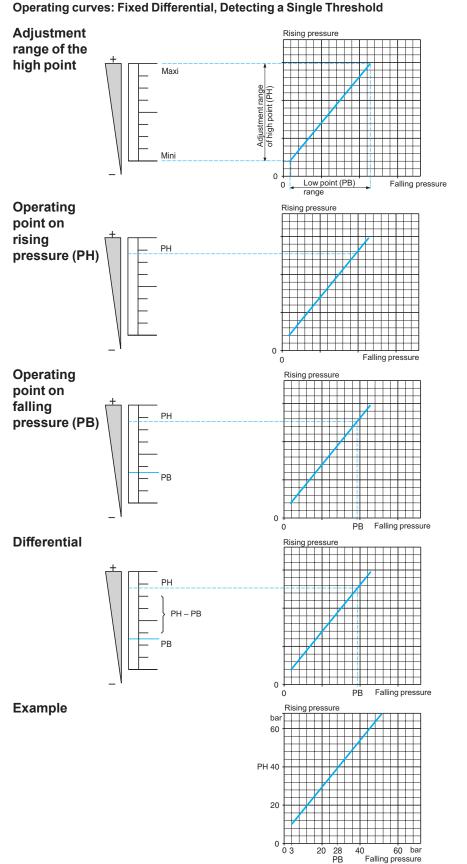
Main criterion: repeat accuracy, precision and minimum drift Example: for a selected high point (PH) of 18 bar

XMLA035 •••

Adjustable from 1.5-35 bar

As a general rule, avoid working at the upper or lower limits of the operating range.

XMLA020 ••• Adjustable from 1-20 bar


Select an XMLA035 •••

Converting Units of Pressure

	psi	kg/cm ²	bar	atm	mm Hg (Torr)	mm H ₂ O	Ра
1 psi =	1	0.07031	0.06895	0.06805	51.71	703.7	6895
1 kg/cm ² =	14.22	1	0.98066	0.96784	735.55	10 000	98 066
1 bar =	14.50	1.0197	1	0.98695	750.06	10 197	10 ⁵
1 atm =	14.70	1.0333	1.0132	1	760.0	10 333	101 325
1 mm Hg = (Torr)	0.01934	1.360 x 10 ⁻³	1.333 x 10 ⁻³	1.316 x 10 ⁻³	1	13.59	133.3
1 mm H ₂ O=	1.421 x 10 ⁻³	10-4	\sim 10 ⁻⁴	\sim 10 ⁻⁴	0.07361	1	\sim 9.80
1 Pa =	1.45 x 10 ⁻⁴	1.0197 x 10⁻⁵	10-5	9.8695 x 10 ⁻⁶	7.5 x 10 ⁻³	0.10197	1

Example: 1 bar = 14.50 psi = 105 Pa

XML range

Defined by the difference between the minimum and maximum high point (PH) setting values.

For a high set point (PH), the lower point (PB) is fixed and cannot be adjusted. For a low set point (PB), the higher point (PH) is fixed and cannot be adjusted.

· / ·

The upper pressure setting at which the pressure or vacuum switch actuates the contacts on rising pressure.

Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state on falling pressure.

The lower point (PB) is not adjustable and is entirely dependent on the high point setting (PH) and the inherent differential of the switch.

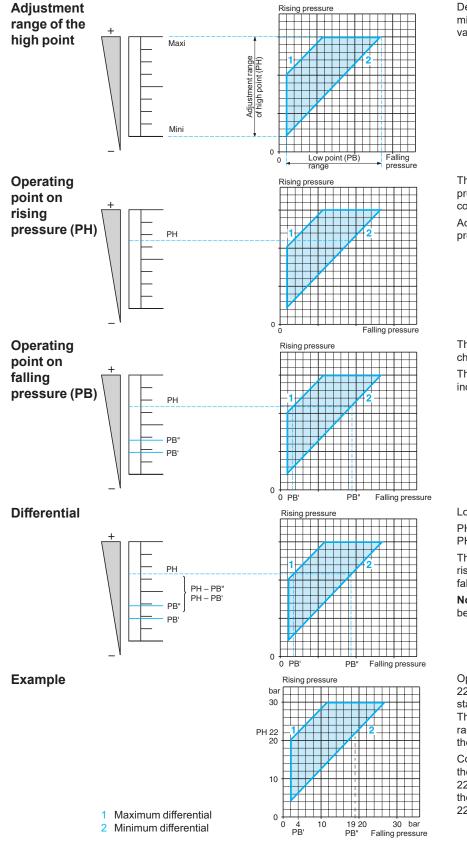
PH-PB = inherent differential

The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB).

This point is not adjustable, so the value of the differential is fixed.

It is the inherent differential of the switch (contact differential, friction, etc.).

Operating point on rising pressure (PH) is 40 bar (set value at which the contact changes state on rising pressure).


The operating point on falling pressure (PB) is 28 bar (fixed value at which the contact returns to its original state).

Conclusion:

the differential is 40 - 28 = 12 bar.

XML range

Operating curves: Adjustable Differential, Regulating between Two Thresholds

Defined by the difference between the minimum and maximum high point (PH) setting values.

The upper pressure setting at which the pressure or vacuum switch actuates the contacts on rising pressure.

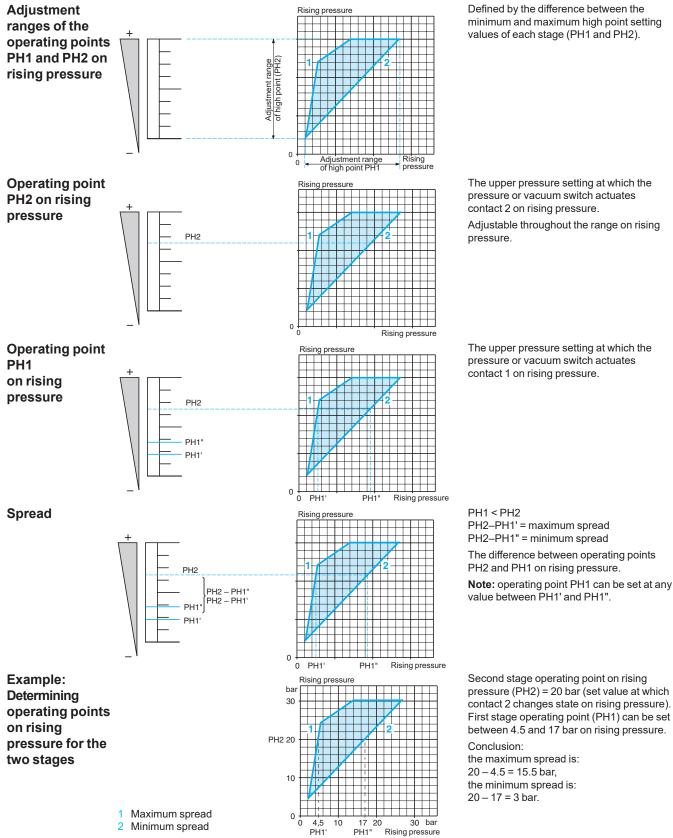
Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state on falling pressure. The adjustable differential enables the independent setting of the lower point (PB).

Low point < High point PH–PB' = inherent differential PH–PB" = minimum differential

The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB).

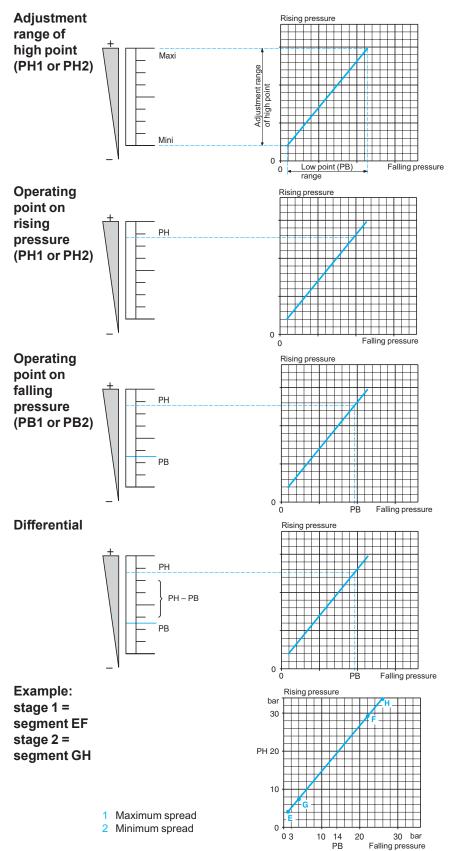
Note: the low point can be set at any value between PB' and PB".


Operating point on rising pressure (PH) is 22 bar (set value at which the contact changes state on rising pressure).

The operating point on falling pressure (PB) ranges from 4 and 19 bar (set value at which the contact returns to its original state).

Conclusion: the maximum differential is 22 - 4 = 18 bar, the minimum differential is 22 - 19 = 3 bar.

XML range



XML range

Operating curves: Dual-Stage, Fixed Differential, Detection at Each Threshold (switching on rising pressure)

Defined by the difference between the minimum and maximum high point (PH1 or PH2) setting values for each stage.

For a high set point (PH1 or PH2), the lower point (PB1 or PB2) is fixed and cannot be adjusted.

For a low set point (PB1 or PB2), the higher point (PH1 or PH2) is fixed and cannot be adjusted.

The upper pressure setting at which the pressure or vacuum switch actuates the contact, for each stage, on rising pressure. Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state, for each stage, on falling pressure.

The lower point (PB) is not adjustable and is entirely dependent on the high point setting (PH) and the inherent differential of the switch.

PH-PB = inherent differential

The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB), for each stage. This point is not adjustable, so the value of the differential is fixed. It is the inherent differential of the switch (contact differential, friction, etc.) for each of its two stages.

For stage 2 (segment GH):

Operating point on rising pressure (PH2) is 20 bar (set value at which contact 2 changes state on rising pressure). The operating point on falling pressure (PB2) is 14 bar (fixed value at which contact 2 returns to its original state). Conclusion: for stage 2, the differential is: 20 - 14 = 6 bar. Repeat the same procedure for stage 1

(segment EF).

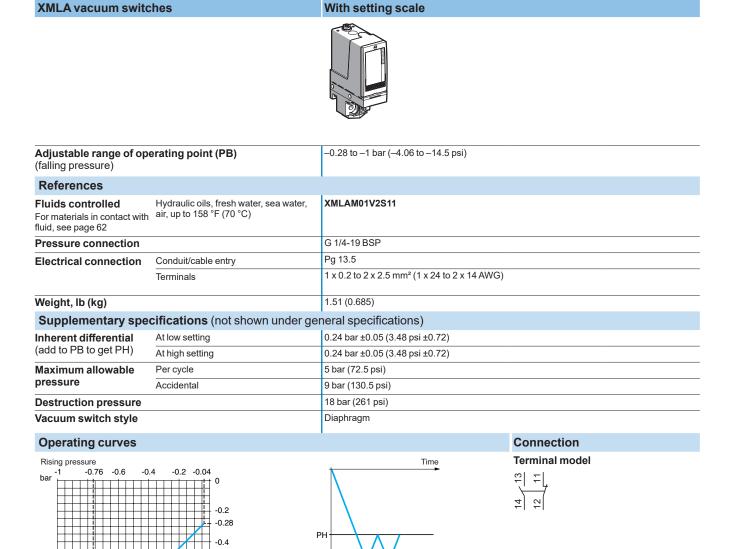
XML range

Example: X	ing the reference for XML Devices MLA004A2S13	XML	Α	004	Α	2 5	3 1	3	
Designatio		Comn							
KML Pressu		XML				nee			
(11) 1 1 0 3 3 4	Nonadjustable differential, single pole	XIVIL	A						
	Adjustable differential, single pole		В		-				
Ivne -	Adjustable differential, double pole		C		-		+		
	Nonadjustable differential, double pole		D		-			-	
	0 to 0.05 (0 to 0.725)			L05				-	
				L35					
	0 to 0.35 (0 to 5.075)		-				+		
	0 to 0.35 (0 to 5.075) Overpressure 0.30 (4.35)		-	S35					
	$\frac{-1 \text{ to } -0.28 (-14.5 \text{ to } -4.06)}{-14.5 \text{ to } -4.06}$			M01					
	-1 to -0.14 (-14.5 to -2.03)			M02					
	-0.2 to -0.02 (-2.9 to -0.029)			M03					
	–0.5 to 5 (-7.25 to 72.5)			M05					
	0 to 1 (0 to 14.5)			001					
	0 to 2.5 (0 to 36.25)			002					
Operating	0 to 2.5 (0 to 36.25) Overpressure 0.30 (4.35)			S02					
ange	0 to 4 (0 to 58)			004					
ar (psi)	0 to 4 (0 to 58) Overpressure 0.30 (4.35)			S04					
ai (pai)	0 to 10 (0 to 145)			010					
	0 to 10 (0 to 145) Overpressure 0.30 (4.35)			S10					
	0 to 20 (0 to 290)			020					
	0 to 20 (0 to 290) Overpressure 0.30 (4.35)			S20					
	0 to 35 (0 to 507.5)			035					
	0 to 40 (0 to 580)			040					
	0 to 70 (0 to 1015)			070					
	0 to 160 (0 to 2320)			160					
	0 to 300 (0 to 4350)			300					
	0 to 500 (0 to 7250)		-	500					
	Pressure switch diaphragm type								
	Hydraulic oils, air, fresh, or sea water, 32-158 °F (0-70 °C)				А			-	
	Hydraulic oils, air, fresh, or sea water, 32-320 °F (0-160 °C)		-		B				
	Corrosive fluid		-		C				
					P				
			-					—	
	Hydraulic oils or air, 32–140 °F (0–60 °C)				R				
nput fluid	Fresh or sea water, 32–320 °F (0–160 °C)				S				
	Vacuum switch diaphragm type								L
	Hydraulic oils, air, fresh or sea water, 32-158 °F (0-70 °C)				V				
	Hydraulic oils, air, fresh or sea water, 32–320 °F (0–160 °C)				Т				
	Pressure switch piston type								
	Hydraulic oils or air, 32–320 °F (0–160 °C)				D				
	Fresh or sea water, 32–320 °F (0–160 °C)				Е				
	Corrosive fluid, 32–320 °F (0–160 °C)				Ν				
Display	Without					1			
ropiay	With					2			
	Threaded hole					S	;		
electrical onnection	EN 175301-803-A connector (ex DIN 43650)					C	;		
onnection	M12 threaded connector (Micro Change type)					C)		
ontact type	Dry contact						1		
	European								
	G 1/4 (BSP female)								
	Pressure G 1-1/4 for viscous products (input fluid identifier = P)							1	
	Electrical Type 13 (Pg 13.5)								
	G 1/4 (BSP female)								
	G 1-1/4 for viscous products (input fluid identifier = P)							_ 2	
intry type	Electrical ISO M20								
	U.S.A.								
	Pressure 1/4"-18 NPTF							2	
	Electrical 1/2"-14 NPT							- 3	
	Japan								
	Pressure PT 1/4 (JIS B0203)								
	Electrical 1/2 in. PF (JIS B0202)							- 4	
ptions	May indicate factory setting								•••

Selection and specifications

Electromechanical pressure and vacuum switches

XML range


Size: -1 bar (-14.5 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

+

-0.8 B.O-

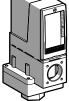
L-1 juille bar L

-0.6

Other versions

For switches with alternative tapped cable entries, please consult our Customer Care Center.

— Adjustable value


₽₿⋕


Vacuum

XML range

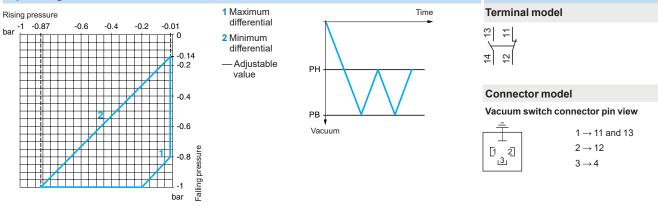
Size: -1 bar (-14.5 psi) Adjustable differential, for regulation between two thresholds

1 C/O single-pole contact XMLB vacuum switches With setting scale

Connection

Adjustable range of operating point (PB) (falling pressu

(falling pressure)			
References			
Fluids controlled For materials in contact with fluid, see page 62	 XMLBM02V2S11	XMLBM02V2S12	XMLBM02V2C11

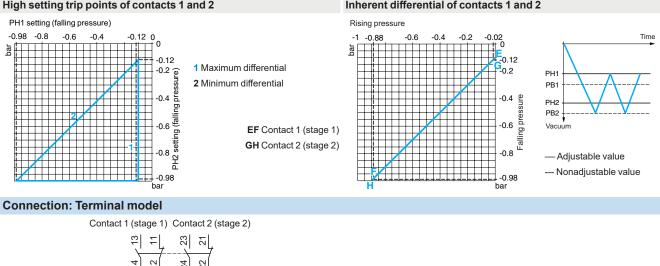

-0.14 to -1 bar (-2.03 to -14.5 psi)

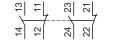
liulu, see page oz						
Pressure connection		G 1/4-19 BSP				
Electrical connection	Conduit/cable entry	Pg 13.5	ISO M20	DIN 43650A, 4-pin male		
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)		For suitable female connector, see page 57.		
Weight, lb (kg)		2.24 (1.015)		2.27 (1.030)		
Supplementary spe	cifications (not shown under gene	eral specifications)			
Possible differential	Min. at low setting	0.13 bar ±0.02 (1.88 psi ±0.29)				
(add to PB to get PH)	Min. at high setting	0.13 bar ±0.02 (1.88 psi ±0.29)				
	Max. at high setting	0.8 bar (11.6 psi)				
Maximum allowable	Per cycle	5 bar (72.5 psi)				
pressure	Accidental	9 bar (130.5 psi)				
Destruction pressure		18 bar (261 psi)				

Diaphragm

Vacuum switch style

Operating curves


Other versions


XML range

Size: -1 bar (-14.5 psi)

Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

XMLD vacuum switches		Without setting scale
Adjustable range of operating	2nd stage operating point (PB2)	–0.12 to –1 bar (–1.74 to –14.5 psi)
points (falling pressure)	1st stage operating point (PB1)	–0.10 to –0.98 bar (–1.45 to –14.21 psi)
Spread between the two stages (F	PB2—PB1)	0.02 to 0.88 bar (0.29 to 12.76 psi)
References		
Fluids controlled For materials in contact with fluid, see page 62	Hydraulic oils, fresh water, sea water, air, up to 158 $^\circ\text{F}$ (70 $^\circ\text{C})$	XMLDM02V1S11
Pressure connection		G 1/4-19
Electrical connection	Conduit/cable entry	Pg 13.5
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)
Weight, Ib (kg)		2.24 (1.015)
Supplementary specification	s (not shown under general speci	fications)
Inherent differential	At low setting	0.1 bar ±0.035 (1.45 psi ±0.51)
(add to PB1/PB2 to get PH1/PH2)	At high setting	0.1 bar ±0.02 (1.45 psi ±0.29)
Maximum allowable pressure	Per cycle	5 bar (72.5 psi)
	Accidental	9 bar (130.5 psi)
Destruction pressure		18 bar (261 psi)
Vacuum switch style		Diaphragm
Operating curves		'
High setting trip points of contac	ts 1 and 2	Inherent differential of contacts 1 and 2

Other versions

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

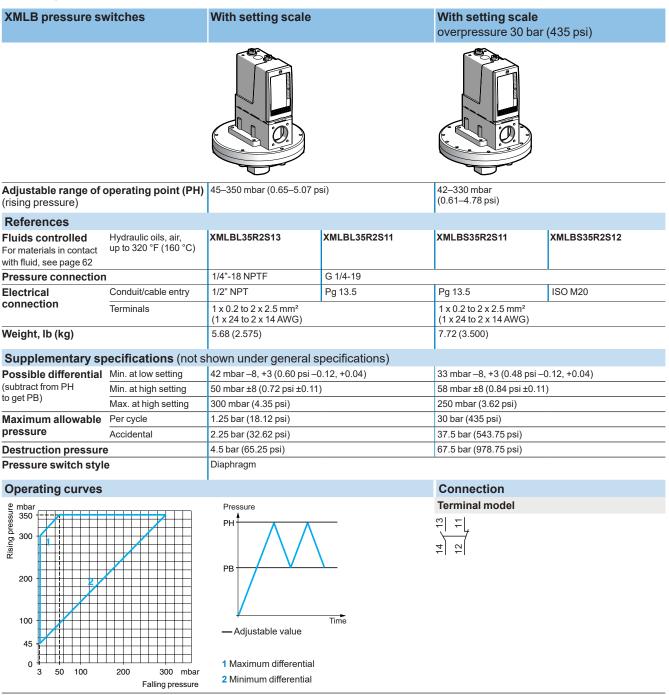
XML range

Size 5 bar (72.5 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XMLB vacu-pressure switches

With setting scale


A. II					
Adjustable range of opera (rising pressure)	ating point (PH)	–0.5 to 5 bar (–7.25 to 72.5 psi)			
References					
Fluids controlled For materials in contact with fluid, see page 62	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLBM05A2S11			
Pressure connection		G 1/4-19			
Electrical connection	Conduit/cable entry	Pg 13.5			
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)			
Weight, Ib (kg)		1.51 (0.685)			
Supplementary specif	fications (not shown under gener	al specifications)			
Possible differential	Min. at low setting	0.5 bar ±0.05 (7.25 psi ±0.72)			
(subtract from PH to get PB)	Min. at high setting	0.5 bar ±0.05 (7.25 psi ±0.72)			
	Max. at high setting	6 bar (87 psi)			
Maximum allowable	Per cycle	6.25 bar (90.62 psi)			
pressure	Accidental	11.25 bar (163.12 psi)			
Destruction pressure		23 bar (333.5 psi)			
Vacu-pressure switch sty	rle	Diaphragm			
Operating curves			Connection		
은 bar		Pressure	Terminal model		
ebar 5 5 4 4	1 Maximum	PH1 4 PB1 1	12 13		
3 2 1 0.5 0 -0.5 -1 0 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2	differential Minimum differential Adjustable value	PH2 PB2 PH3 PH3 PH3 Vacuum	Connector model Vacu-pressure switch pin view $\begin{array}{c} \hline \\ 2 \rightarrow 12 \\ \hline \\ 3 \rightarrow 14 \end{array}$		

Other versions

XML range

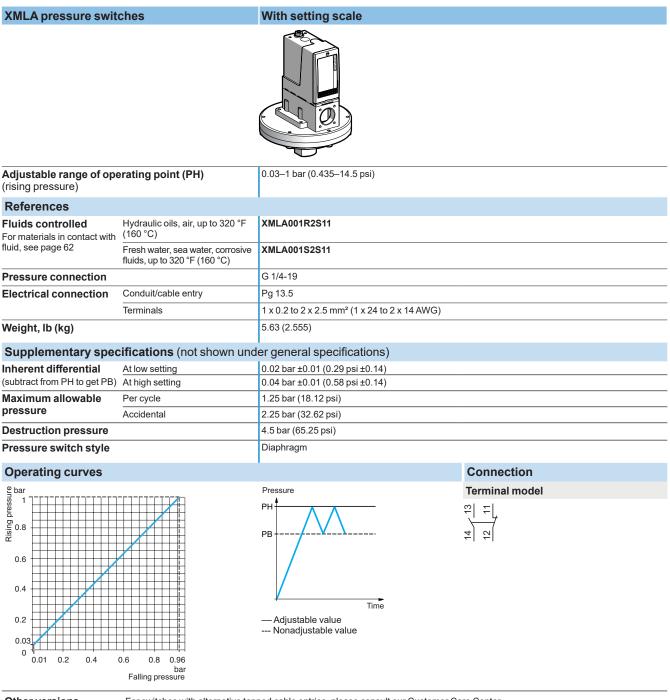
Size 350 mbar (5.07 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

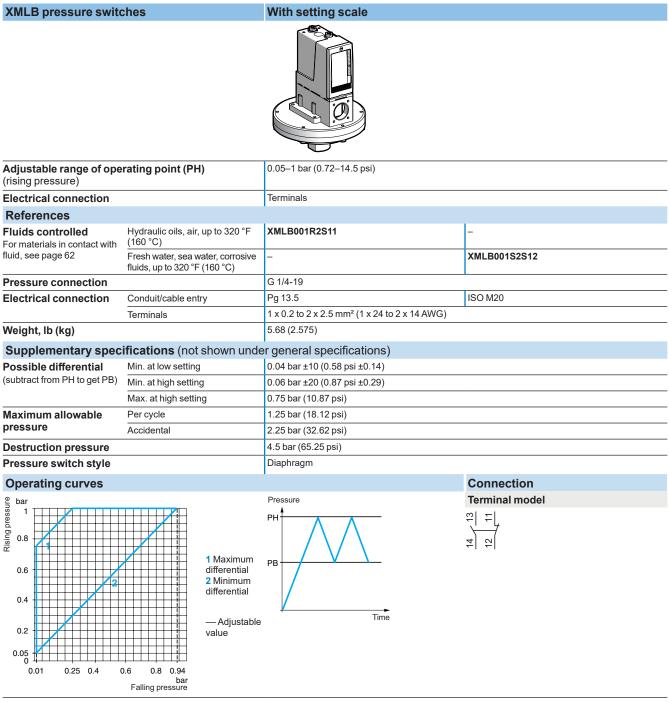

Size 350 mbar (5.07 psi) Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

XMLC pressure switch	es	With setting scale overpressure 30 bar (43	5 psi)		
Adjustable range of opera (rising pressure)	ting point (PH)	42–330 mbar (0.61–4.78 psi)			
References					
Fluids controlled For materials in contact with fluid, see page 62	Hydraulic oils, air, up to 320 °F (160 °C)	XMLCS35R2S13	XMLCS35R2S11	XMLCS35R2S12	
Pressure connection		1/4"-18 NPTF	G 1/4-19		
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20	
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to	2 x 14 AWG)		
Weight, Ib (kg)		7.72 (3.500)			
Supplementary specifi	cations (not shown under	deneral specifications)			
Possible differential	Min. at low setting	40 mbar ±20 (0.58 psi ±0.29)			
(subtract from PH to get PB)	Min. at high setting	88 mbar ±20 (1.27 psi ±0.29)			
	Max. at high setting	230 mbar (3.33 psi)			
Maximum allowable	Per cycle	30 bar (435 psi)			
pressure	Accidental	37.5 bar (543.75 psi)			
Destruction pressure		67.5 bar (978.75 psi)			
Pressure switch style		Diaphragm			
Operating curves				Connection	
mbar 330 300 200 200 200 40 200 200 40 200 40 40 200 40 40 40 40 40 40 40 40 40 40 40 40 4	1 Maximum differential 2 Minimum differential 315 mbar Falling pressure	Pressure PH PB —Adjustable value	Time	Terminal model 1	

Other versions

XML range

Size 1 bar (14.5 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact



Other versions

XML range

Size 1 bar (14.5 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

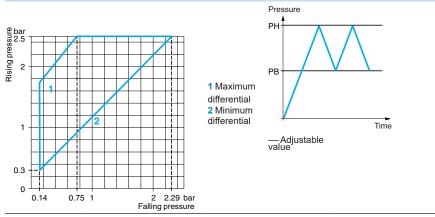
Other versions

XML range

Size 2.5 bar (36.25 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

XMLA pressure switche	es	With setting scale			
Adjustable range of operat (rising pressure)	ting point (PH)	0.15–2.5 bar (2.17–36.	25 psi)		
References					
Fluids controlled For materials in contact with	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLA002A2S11	XMLA002A2S12	XMLA002A2C11	
fluid, see page 62.	Corrosive fluids, up to 320 °F (160 °C)	XMLA002C2S11	-	-	
Pressure connection		G 1/4-19			
Electrical connection	Conduit/cable entry	Pg 13.5	ISO M20	DIN 43650A, 4-pin male	
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1	1 x 24 to 2 x 14 AWG)	For suitable female connector, see page 57.	
Weight, Ib (kg)		2.19 (0.995)		2.23 (1.010)	
Supplementary specific	cations (not shown under g	general specificatio	ns)		
Inherent differential	At low setting	0.13 bar ±0.03 (1.88 ps	i ±0.43)		
(subtract from PH to get PB)	At high setting	0.13 bar ±0.03 (1.88 ps	i ±0.43)		
Maximum allowable	Per cycle	5 bar (72.5 psi)			
Pressure	Accidental	9 bar (130.5 psi)			
Destruction pressure		18 bar (261 psi)			
Pressure switch style		Diaphragm			
Operating curves				Connection	
bar 2.5 2.5 2 2 0.15 0 0.02 1	2 2.37 bar Falling pressure	Pressure PH PB 	Time	Terminal model $\mathfrak{P} = \begin{bmatrix} \neg \\ \neg \\ \neg \end{bmatrix}$ $\mathfrak{P} = \begin{bmatrix} \neg \\ \neg \\ \neg \end{bmatrix}$ Connector modelPressure switch connector pin view $\neg \\ \neg \\ \neg \\ \neg \\ \neg \end{bmatrix}$ $1 \rightarrow 11$ and 13 $[1 \rightarrow 2]$ $2 \rightarrow 12$ $3 \rightarrow 14$	
Other versions	For switches with alternative tap	ned cable entries inlease	e consult our Customer	Care Center	

Other versions

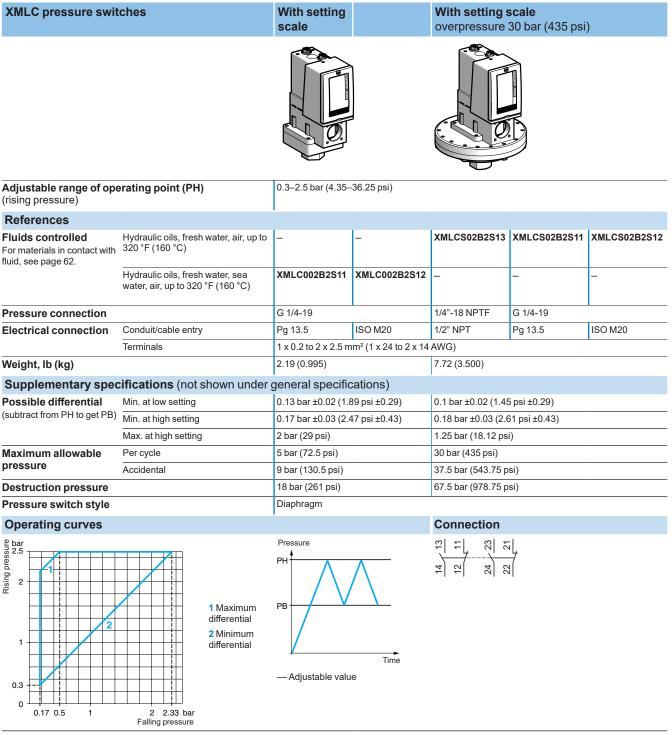

XML range

Size 2.5 bar (36.25 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XMLB pressu	ire switches	With setting scale		With setting scale overpressure 30 bar (435 psi)
Adjustable rang (PH) (rising pres	ge of operating point sure)	0.3–2.5 bar (4.35–36.25 psi)		
References				
Fluids controlled For materials in	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLB002A2S11	XMLB002A2S12	-
contact with fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 °F (160 °C)	XMLB002B2S11	-	-
	Hydraulic oils, fresh water, air, up to 320 °F (160 °C)	_	-	XMLBS02B2S11
Pressure conne	ection	G 1/4-19	1	
Electrical	Conduit/cable entry	Pg 13.5	ISO M20	Pg 13.5
connection	Terminals	1 x 0.2 – 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG)	1 x 0.2 – 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)	1 x 0.2 – 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)
Weight, lb (kg)		2.24 (1.015)	2.24 (1.015)	7.72 (3.500)
Supplementa	ry specifications (not	shown under general sp	ecifications)	·
Possible differential	Min. at low setting	0.16 bar, –0.8 mbar, +1.1 mbar	•	0.1 bar –0.8 mbar, +1.1 mbar (1.45 psi –0.01, +0.02)
(subtract from PH to get PB)	Min. at high setting	0.21 bar ±1.4 mbar (3.04 psi ±0	0.02)	0.22 bar ±1.4 mbar (3.19 psi ±0.02)
lo gerr Dj	Max. at high setting	1.75 bar (25.37 psi)		1.45 bar (21 psi)
Maximum	Per cycle	5 bar (72.5 psi)		30 bar (435 psi)
allowable pressure	Accidental	9 bar (130.5 psi)		37.5 bar (543.75 psi)
Destruction pre	ssure	18 bar (261 psi)		67.5 bar (978.75 psi)
Pressure switch	n style	Diaphragm		

Operating curves

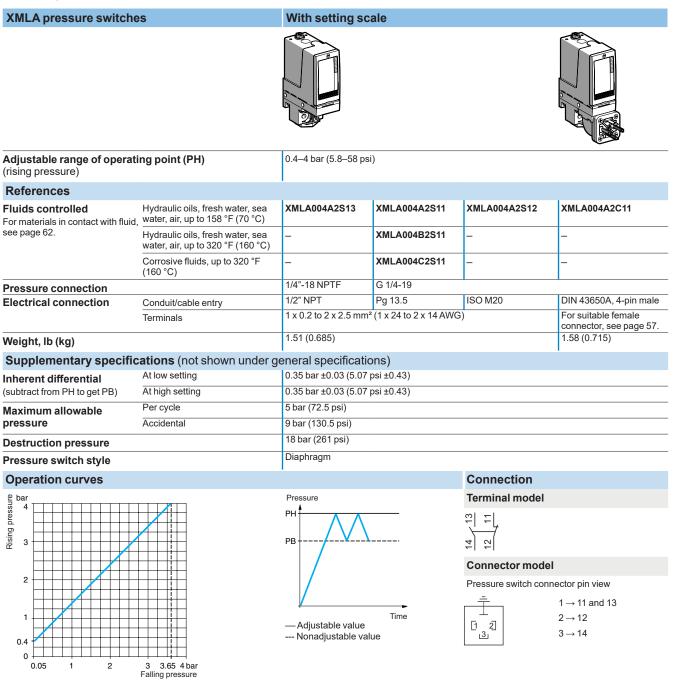

Connection Terminal model

12 [7] 12 [7]

XML range

Size 2.5 bar (36.25 psi)

Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts



Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

Size 4 bar (58 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

Other versions

XML range

Size 4 bar (58 psi)

Adjustable differential, for regulation between 2 thresholds 1 C/O single-pole contact

XMLB pressure	switches	With setting	scale			With setting overpressure (435 psi)	
Adjustable range o (rising pressure)	f operating point (PH)	0.25–4 bar (3.62	–58 psi)				
References							
	Hydraulic oils, fresh water, sea t water, air, up to 158 °F (70 °C)	XMLB004A2S13	XMLB004A2S11	XMLB004A2S12	XMLB004A2C11	-	-
with fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 $^\circ\text{F}$ (160 $^\circ\text{C})$	-	XMLB004B2S11	-	-	-	-
	Hydraulic oils, freshwater, air, up to 320 °F (160 °C)	-	-	-	-	XMLBS04B2S11	XMLBS04B2S12
Pressure connection	on	1/4"-18 NPTF	G 1/4-19				
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20	DIN 43650A, 4-pin male	Pg 13.5	ISO M20
	Terminals		1 x 0.2 to 2 x 2.5 mm² For su (1 x 24 to 2 x 14 AWG) female connect page 5			1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG) ee	
Weight, lb (kg)		2.24 (1.015) 2.27 (1.030)				7.72 (3.500)	
Supplementary s	specifications (not shown	n under gener	al specificatio	ns)			
Possible	Min. at low setting	0.2 bar ±0.01 (2.	9 psi ±0.14)			0.15 bar ±0.01 (2.18 psi ±0.14)
differential (subtract from PH to	Min. at high setting	0.25 bar, -0.03, +0.05 (3.62 psi, -0.43, +0.72)			0.34 bar, -0.03, +0.05 (4.93 psi, -0.43, +0.72)		
get PB)	Max. at high setting	2.4 bar (34.8 psi)			2.46 bar (35.67 psi)	
Maximum	Per cycle	5 bar (72.5 psi)				30 bar (435 psi)	
allowable pressure	Accidental	9 bar (130.5 psi)			37.5 bar (543.75 psi)		
Destruction pressu	ire	18 bar (261 psi)			67.5 bar (978.75 psi)		
Pressure switch st	yle	Diaphragm					
Operating curve	s				Conn	ection	
		Pressure			Termi	nal model	
saud Buisy 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1		PH 21 21 EH 21 21			L T nector model		
0.25						re switch connect $1 \rightarrow 11$ and $2 \rightarrow 12$ $3 \rightarrow 14$	
0.05 1 1.	.6 2 3 3.75 bar Falling pressure	2 Minimum differ	rential				

Selection and specifications (continued)

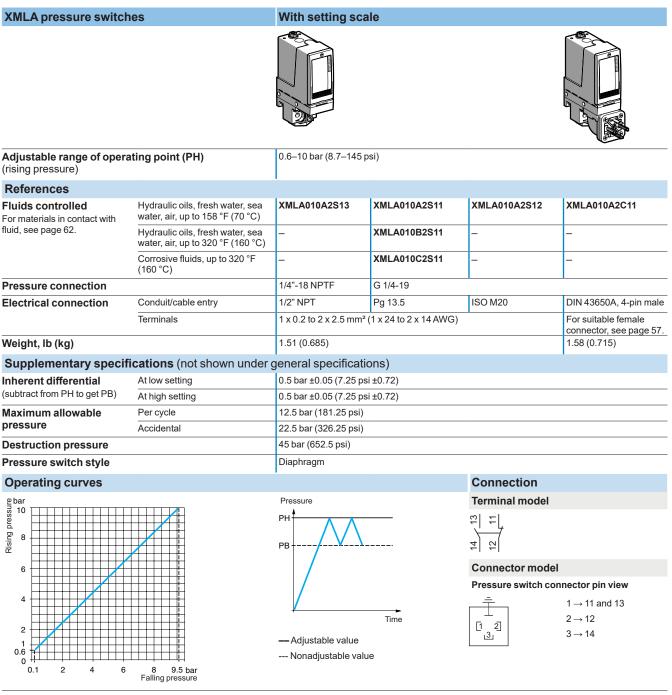
Electromechanical pressure and vacuum switches

XML range

Size 4 bar (58 psi)

Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

XMLC pressure switches		With setting scal	9	With setting scale overpressure 30 bar (435 psi)		
Adjustable range of opera (rising pressure)	ting point (PH)	0.3–4 bar (4.35–58 psi)				
References						
Fluids controlled For materials in contact with	Hydraulic oils, fresh water, air, up to 320 °F (160 °C)	-	-	XMLCS04B2S11	XMLCS04B2S12	
fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 °F (160 °C)	XMLC004B2S11	XMLC004B2S12	-	-	
Pressure connection		G 1/4-19		•	•	
Electrical connection	Conduit/cable entry	Pg 13.5	ISO M20	Pg 13.5	ISO M20	
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1	x 24 to 2 x 14 AWG)			
Weight, Ib (kg)		1.51 (0.685)		7.72 (3.500)		
Supplementary specifi	ications (not shown under	general specificatio	ns)			
Possible differential	Min. at low setting	0.15 bar ±0.02 (2.18 ps	,	0.1 bar ±0.02 (1.45 ps	i ±0.29)	
(subtract from PH to get PB)	Min. at high setting	0.17 bar ±0.02 (2.47 ps	i ±0.29)	0.25 bar ±0.02 (3.62 p	si ±0.29)	
	Max. at high setting	2.5 bar (36.25 psi)		2.20 bar (31.9 psi)		
Maximum allowable	Per cycle	5 bar (72.5 psi)		30 bar (435 psi)		
pressure	Accidental	9 bar (130.5 psi)		37.5 bar (543.75 psi)		
Destruction pressure		18 bar (261 psi)		67.5 bar (978.75 psi)		
Pressure switch style		Diaphragm				
Operating curves		1		Connection		
º bar		Pressure		Terminal model		
bar bur bur bur bur bur bur bur bur bur bu	1 Maximum differential 2 Minimum differential 3 3.83bar Falling pressure	PH PB —Adjustable value	Time	14 12 12 12 13 13 22 23 21 23		


Other versions

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

Size 10 bar (145 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

Other versions

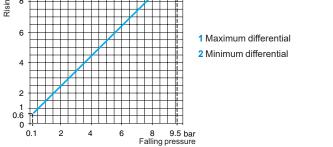
Connector model

Pressure switch connector pin view

T

[1 2] _____3

Time


-Adjustable value

XML range

Size 10 bar (145 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

1 C/O single-pole	contact					
XMLB pressure s	witches	With setting scale				
Adjustable range of (rising pressure)	operating point (PH)	0.7–10 bar (10.15–145 p	si)			
References						
Fluids controlled For materials in contact with fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLB010A2S13	XMLB010A2S11	XMLB010A2S12	XMLB010A2C11	
mar naid, 000 page 02.	Hydraulic oils, fresh water, air, up to 320 °F (160 °C)	-	XMLB010B2S11	-	-	
	Corrosive fluids, up to 320 °F (160 °C)	-	XMLB010C2S11	-	XMLB010C2C11	
Pressure connection	n	1/4"-18 NPTF	G 1/4-19		•	
Electrical	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20	DIN 43650A, 4-pin male	
connection	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)			For suitable female connector, see page 57.	
Weight, lb (kg)		1.55 (0.705)	1.62 (0.735)			
	pecifications (not sho	- · ·	,			
Possible differential		0.57 bar ±0.05 (8.26 psi :	,			
(subtract from PH to get PB)	Min. at high setting	0.85 bar, –0.1, +0.15 (12	.32 psi, –1.45, +2.17)			
	Max. at high setting	7.5 bar (108.75 psi				
Maximum allowable		12.5 bar (181.25 psi)				
pressure	Accidental	22.5 bar (326.25 psi)				
Destruction pressur		45 bar (652.5 psi)				
Pressure switch sty	le	Diaphragm				
Operating curves	i	1			Connection	
2 bar 7 10 2 0 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8			Pressure PH		Terminal model	

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

Size 10 bar (145 psi)

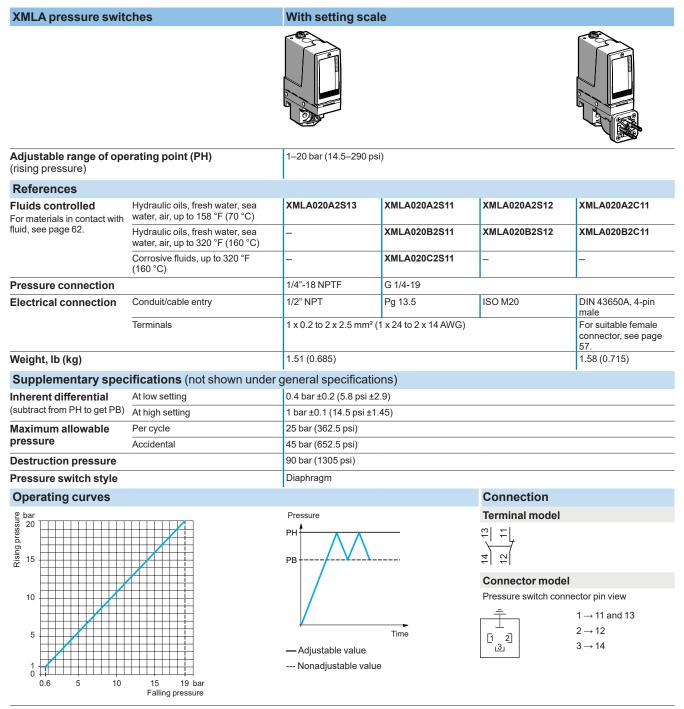
Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

XMLC pressure switches		With setting scale	With setting scale overpressure 30 bar (435 psi)
Adjustable range of opera (rising pressure)	ting point (PH)	0.7–10 bar (10.15–145 psi)	
References			
Fluids controlled For materials in contact with	Hydraulic oils, fresh water, air, up to 158 °F (70 °C)	-	XMLCS10A2S11
fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 °F (160 °C)	XMLC010B2S11	-
	Corrosive fluids, up to 320 °F (160 °C)	XMLC010C2S11	-
Pressure connection		G 1/4-19	
Electrical connection	Conduit/cable entry	Pg 13.5	Pg 13.5
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)	1
Weight, Ib (kg)		1.51 (0.685)	7.72 (3.500)
Supplementary specifi	cations (not shown under gei	neral specifications)	
Possible differential	Min. at low setting	0.45 bar ±0.05 (6.53 psi ±0.72)	0.25 bar ±0.05 (3.62 psi ±0.72)
(subtract from PH to get PB)	Min. at high setting	0.70 bar ±0.01 (10.15 psi ±1.45)	0.65 bar ±0.01 (9.42 psi ±1.45)
	Max. at high setting	8 bar (116 psi)	5.6 bar (81.2 psi)
Maximum allowable	Per cycle	12.5 bar (181.25 psi)	30 bar (435 psi)
pressure	Accidental	22.5 bar (326.25 psi)	37.5 bar (543.75 psi)
Destruction pressure		45 bar (652.5 psi)	67.5 bar (978.75 psi)
Pressure switch style		Diaphragm	1
Operating curves			Connection
		Pressure	
bar 10 6 4 2 0.7 0.25 2 4 6	1 Maximum differential 2 Minimum differential 8 9.3 bar	PH PB PB Time Adjustable value	Terminal model 13 13 14 15 15 16 17 18 19 11 12 13 14 15 15 16 17 18 19 19 11 12 13 14 15 15 16 17 18 19 10 10 10 10 11 12 14 15 14 15 14 15 16 17 18 19 10 10
Otherversions	Falling pressure	apple entries, places consult our Quatemar Care	

Other versions

XML range

Size 10 bar (145 psi)

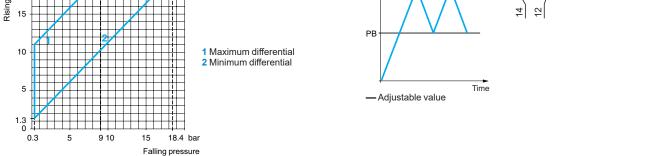

Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

•	ontacts (one per stage)			
XMLD pressure sw	licnes	Without setting scale		
Adjustable range of	2nd stage operating point (PH2)	1.2–10 bar (17.4–145 psi)		
each operating point (rising pressure)	1st stage operating point (PH1)	0.52–9.32 bar (7.54–135.14 psi)		
Spread between the t	wo stages (PH2–PH1)	0.68–5.8 bar (9.86–84.1 psi)		
References		'		
Fluids controlled For materials in contact with fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 °F (160 °C)	XMLD010B1S11		
Pressure connection		G 1/4-19		
Electrical connection		Pg 13.5		
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)		
Weight, Ib (kg)		1.55 (0.705)		
Supplementary sp	ecifications (not shown un	nder general specifications)		
Inherent differential (subtract from PH1/PH2	At low setting	0.45 bar ±0.05 (6.53 psi ±0.72)		
to get PB1/PB2)	At high setting	0.6 bar, ±0.1 (8.7 psi ±1.45)		
Maximum allowable	Per cycle	12.5 bar (181.25 psi)		
pressure	Accidental	22.5 bar (326.25 psi)		
Destruction pressure		45 bar (652.5 psi)		
Pressure switch style)	Diaphragm		
Operating curves				
	nts of contacts 1 and 2	Inherent differential of contacts 1 and 2		
ense bar bar built	6 8 9.32 bar H1 setting (rising pressure)	bar 9.32 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Pressure PH2 PB2 PH1 PB1 Time 	
1 Maximum differential 2 Minimum differential		EF Contact 1 (stage 1) GH Contact 2 (stage 2)	Contact 2 (stage 2) Contact 1 (stage 1) $\begin{array}{c c} & & \\ \hline \\ \hline$	

XML range

Size 20 bar (290 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

Other versions


XML range

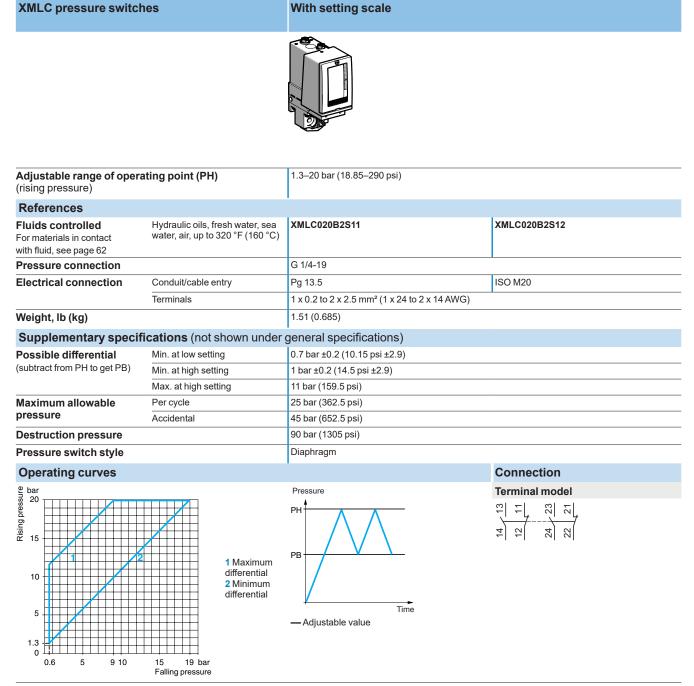
Size 20 bar (290 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XMLB pressure switches	With setting scale

Adjustable range of (rising pressure)	f operating point (PH)	1.3–20 bar (18.9–290 psi)				
References						
Fluids controlled For materials in contact with fluid, see page 62	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLB020A2S13	XMLB020A2S11	XMLB020A2S12		
	Hydraulic oils, fresh water, air, up to 320 °F (160 °C)	-	XMLB020B2S11	-		
	Corrosive fluids, up to 320 °F (160 °C)	-	XMLB020C2S11	XMLB020C2S12		
Pressure connection	n	1/4"-18 NPTF	G 1/4-19	•		
Electrical	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20		
connection Terminals		1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)				
Weight, lb (kg)		1.55 (0.705)				
Supplementary s	pecifications (not sl	nown under general specific	cations)			
Possible	Min. at low setting	1 bar ±0.25 (14.5 psi ±3.63)				
differential	Min. at high setting	1.6 bar ±0.25 (23.20 psi ±3.63)				
(subtract from PH to get PB)	Max. at high setting	11 bar (159.5 psi)				
Maximum	Per cycle	25 bar (362.5 psi)				
allowable pressure	Accidental	45 bar (652.5 psi)				
Destruction pressu	re	90 bar (1305 psi)				
Pressure switch style		Diaphragm				
Operating curves				Connection		
e bar 20 20 20 20 20 20 20 20 20 20 20 20 20			Pressure PH	Terminal model 약 두 파 이		

Other versions


Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

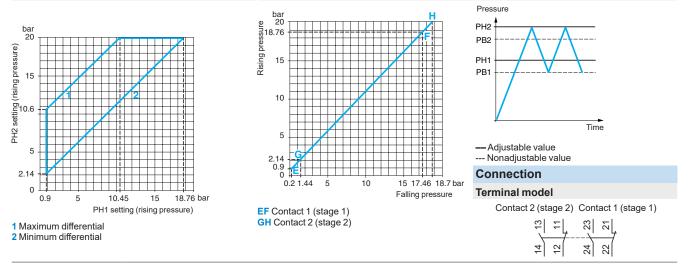
Size 20 bar (290 psi)

Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

Other versions

XML range

Size 20 bar (290 psi)


Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

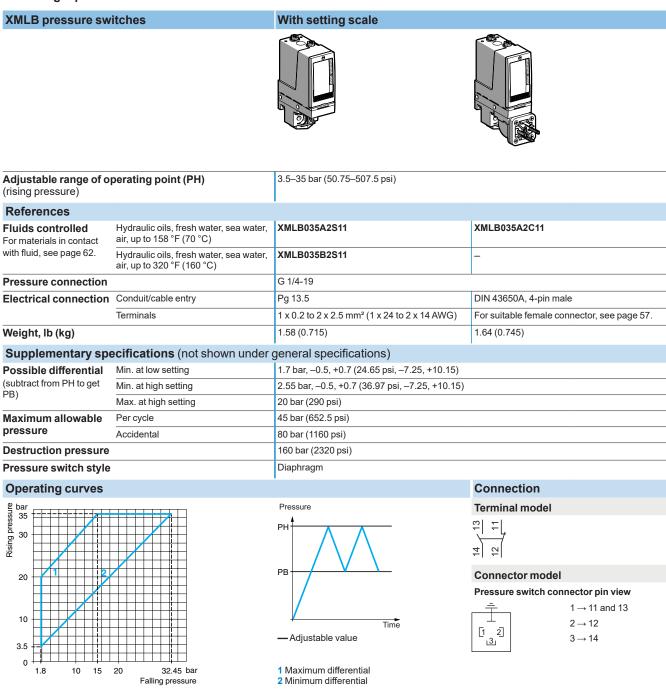
XMLD pressure sw	vitches	Without setting scale
Adjustable range of each operating point	2nd stage operating point (PH2)	2.14-20 bar (31.03-290 psi)
(rising pressure)	1st stage operating point (PH1)	0.9-18.76 bar (13.05-272.02 psi)
Spread between the t	wo stages (PH2–PH1)	1.24-9.55 bar (17.98-138.48 psi)
References		
Fluids controlled For materials in contact with fluid, see page 62.	Corrosive fluids, up to 320 °F (160 °C)	XMLD020C1S12
Pressure connection		G 1/4-19
Electrical connection	Conduit/cable entry	ISO M20
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)
Weight, Ib (kg)		1.55 (0.705)
Supplementary sp	ecifications (not shown u	nder general specifications)
Inherent differential	At low setting	0.7 bar ±1.05 (10.15 psi ±2.18)
(subtract from PH1/PH2 to get PB1/PB2)	At high setting	1.3 bar, ±0.3 (18.85 psi ±4.35)
Maximum allowable	Per cycle	25 bar (362.5 psi)
pressure	Accidental	45 bar (652.5 psi)
Destruction pressure		90 bar (1305 psi)
Pressure switch style)	Diaphragm

Operating curves

High setting trip points of contacts 1 and 2

Inherent differential of contacts 1 and 2

XML range


Size 35 bar (507.5 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact

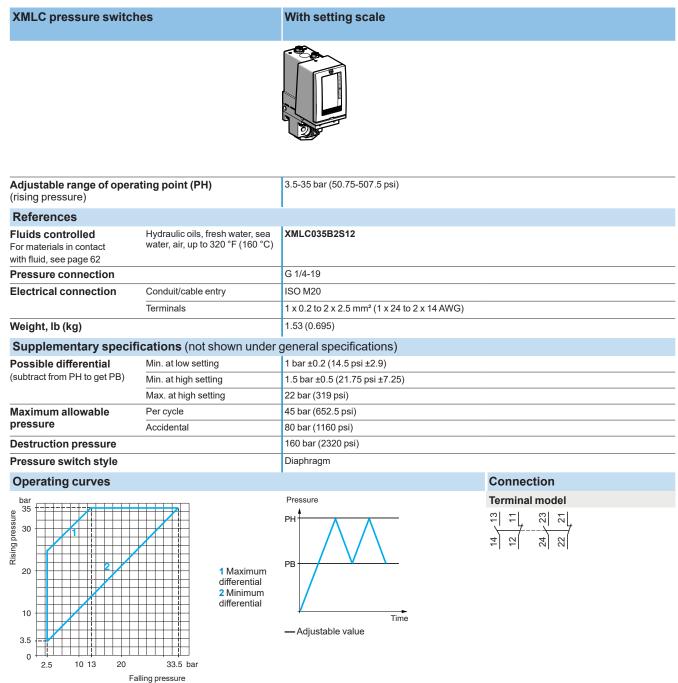
XMLA pressure switcl	hes	With setting scale			
Adjustable range of oper (rising pressure)	ating point (PH)	1.5-35 bar (21.75-507.5 psi)			
References					
Fluids controlled For materials in contact with	Hydraulic oils, fresh water, sea water, air, up to 158 °F (70 °C)	XMLA035A2S11	XMLA035A2S12	XMLA035A2C11	
fluid, see page 62.	Hydraulic oils, fresh water, sea water, air, up to 320 °F (160 °C)	XMLA035B2S11	-	XMLA035B2C11	
	Corrosive fluids, up to 320 °F (160 °C)	-	-	XMLA035C2C11	
Pressure connection		G 1/4-19			
Electrical connection	Conduit/cable entry	Pg 13.5	ISO M20	DIN 43650A, 4-pin male	
Terminals		1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)		For suitable female connector, see page 57.	
Weight, Ib (kg)		1.53 (0.695) 1.60 (0.725)		1.60 (0.725)	
Supplementary specif	fications (not shown under	general specifications)			
Inherent differential	At low setting	1.25 bar ±0.25 (18.12 psi ±3.62)			
(subtract from PH to get PB)	At high setting	1.25 bar ±0.25 (18.12 psi ±3.62	1.25 bar ±0.25 (18.12 psi ±3.62)		
Maximum allowable	Per cycle	45 bar (652.5 psi)			
Pressure	Accidental	80 bar (1160 psi)			
Destruction pressure		160 bar (2320 psi)			
Pressure switch style		Diaphragm			
Operating curves			Connection		
		Pressure	Terminal model		
bar 35 6 30 8 2 2 2 2		РН	12 13		
20			Connector model		
			Pressure switch connector	pin view	
				$1 \rightarrow 11$ and 13	
10		₽ ► Time		$2 \rightarrow 12$	
1.5		— Adjustable value Nonadjustable value		$3 \rightarrow 14$	
0.25 10 20	30 33.75 bar				
	Falling pressure				

Other versions

XML range

Size 35 bar (507.5 psi) Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

Other versions


Selection and specifications (continued)

Electromechanical pressure and vacuum switches

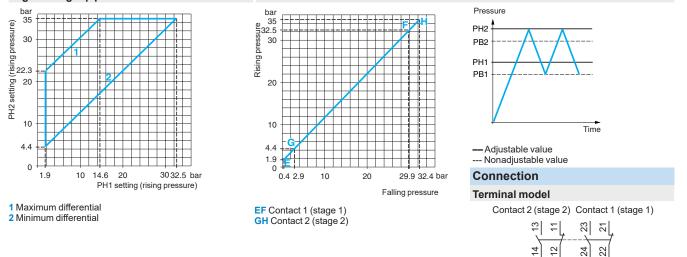
XML range

Size 35 bar (507.5 psi) Adjustable differential, for

Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

Other versions

XML range


Size 35 bar (507.5 psi)

Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

XMLD pressure sw	vitches	Without setting scale
Adjustable range of each operating point	2nd stage operating point (PH2)	4.4-35 bar (63.8-507.5 psi)
(rising pressure)	1st stage operating point (PH1)	1.9-32.5 bar (27.55-471.25 psi)
Spread between the t	wo stages (PH2–PH1)	2.5-20.4 bar (36.25-295.8 psi)
References		
Fluids controlled For materials in contact with fluid, see page 62.	Corrosive fluids, up to 320 °F (160 °C)	XMLD035B1S11
Pressure connection		G 1/4-19
Electrical connection	Conduit/cable entry	Pg 13.5
	Terminals	1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG)
Weight, Ib (kg)		1.58 (0.715)
Supplementary sp	ecifications (not shown u	nder general specifications)
Inherent differential	At low setting	1.5 bar ±0.3 (21.75 psi ±4.35)
(subtract from PH1/PH2 to get PB1/PB2)	At high setting	2.6 bar, ±0.7 (37.7 psi ±10.15)
Maximum allowable	Per cycle	45 bar (652.5 psi)
pressure	Accidental	80 bar (1160 psi)
Destruction pressure)	160 bar (2320 psi)
Pressure switch style	•	Diaphragm
Operating curves		

High setting trip points of contacts 1 and 2

Inherent differential of contacts 1 and 2

XML range

Size 70 bar (1015 psi) Fixed differential, for detection of a single threshold

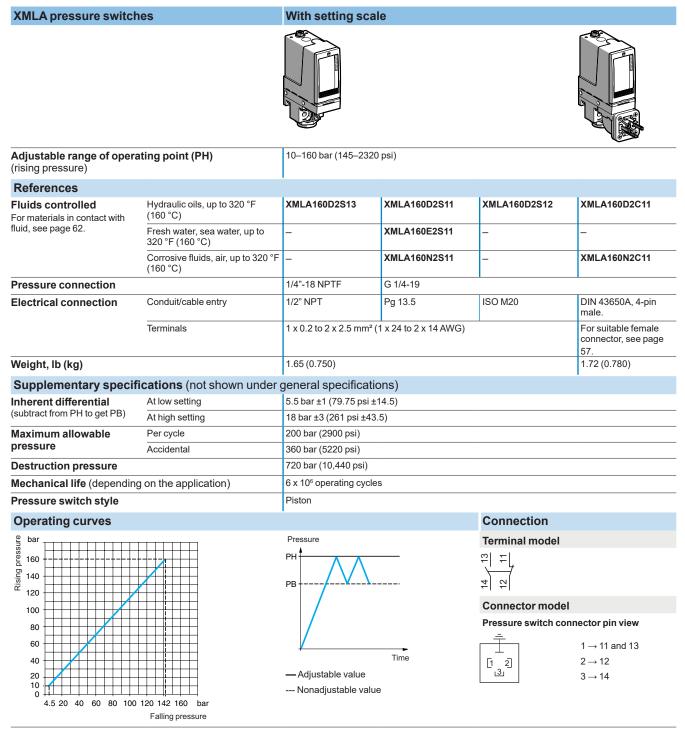
1 C/O single-pole contact

XMLA pressure switch	nes	With setting scale			
Adjustable range of opera (rising pressure)	ating point (PH)	5–70 bar (72.5–1015	psi)		
References					
Fluids controlled For materials in contact with	Hydraulic oils, up to 320 °F (160 °C)	XMLA070D2S13	XMLA070D2S11	XMLA070D2S12	XMLA070D2C11
fluid, see page 62	Fresh water, sea water, up to 320 °F (160 °C)	XMLA070E2S13	XMLA070E2S11	-	-
	Corrosive fluids, air, up to 320 °F (160 °C)	-	XMLA070N2S11	XMLA070N2S12	-
Pressure connection		1/4"-18 NPTF	G 1/4-19		
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20	DIN 43650A, 4-pin male
Terminals		1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG)			For suitable female connector, see page 57.
Weight, Ib (kg)		1.53 (0.695) 1.60 (0.725)			
Supplementary specif	ications (not shown under g	general specificat	ions)		
Inherent differential	At low setting	3 bar ±1 (43.5 psi ±14	1.5)		
(subtract from PH to get PB)	At high setting	7.5 bar ±1 (108.75 ps	i ±14.5)		
Maximum allowable	Per cycle	90 bar (1035 psi)			
pressure	Accidental	160 bar (2320 psi)			
Destruction pressure		320 bar (4640 psi)			
Pressure switch style		Piston			
Operating curves				Connection	
원 bar ፬ 70 		Pressure		Terminal model	
e nor sear of the search of t		PH PB		12 13	
40				Connector mode Pressure switch co	-
20		— Adjustable value	Time		$1 \rightarrow 11 \text{ and } 13$ $2 \rightarrow 12$ $3 \rightarrow 14$
0282040	62.5 bar Falling pressure				

Other versions

XML range

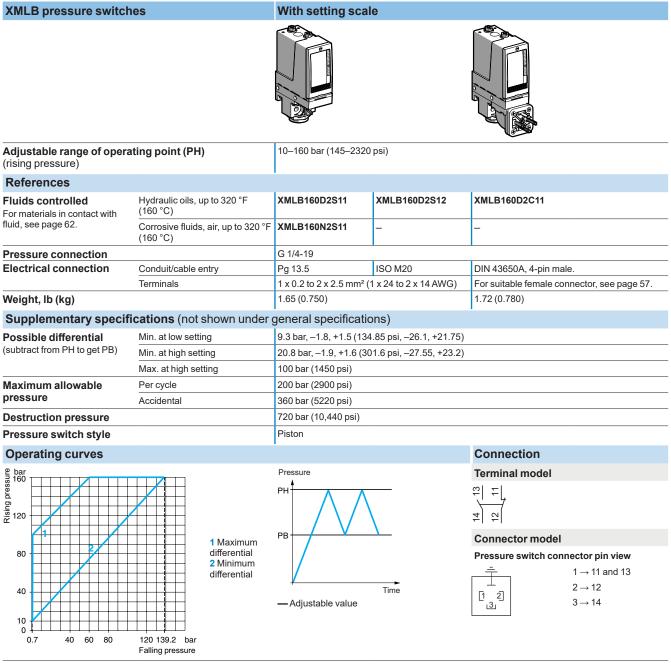
Size 70 bar (1015 psi) Adjustable differential, for re


Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XMLB pressure switch	les		With setting scale		
Adjustable range of opera (rising pressure)	ting point (PH)		7–70 bar (101.5–1015 psi)		
References					
Fluids controlled For materials in contact with	Hydraulic oils, up to 320 (160 °C)	°F	XMLB070D2S11		
fluid, see page 62.	Corrosive fluids, air, up to 320 °F (160 °C)		XMLB070N2S11		
Pressure connection			G 1/4-19		
Electrical connection	Conduit/cable entry		Pg 13.5		
	Terminals		1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)		
Weight, Ib (kg)			1.58 (0.715)		
Supplementary specifi	ications (not shown	under	general specifications)		
Possible differential	Min. at low setting		4.7 bar, -0.4, +0.7 (68.15 psi, -5.8, +10.15)		
(subtract from PH to get PB)	Min. at high setting		8.8 bar, -0.6, +0.8 (127.6 psi, -8.7, +11.6)		
	Max. at high setting		50 bar (725 psi)		
Maximum allowable	Per cycle		90 bar (1035 psi)		
pressure	Accidental		160 bar (2320 psi)		
Destruction pressure			320 bar (4640 psi)		
Pressure switch style			Piston		
Operating curves				Connection	
By bar 70 60 40 40 7 7 0 2.3 20 40	1 Maxir differen 2 Minir differen 2 Minir differen 2 Minir differen	ntial num	Pressure PH PB Time 	Terminal model $ \begin{array}{c c} & & \\ & & \\ & & \\ \hline \\ & & \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ &$	
	Falling pressure				

XML range

Size 160 bar (2320 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact



XML range

Size 160 bar (2320 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XML range

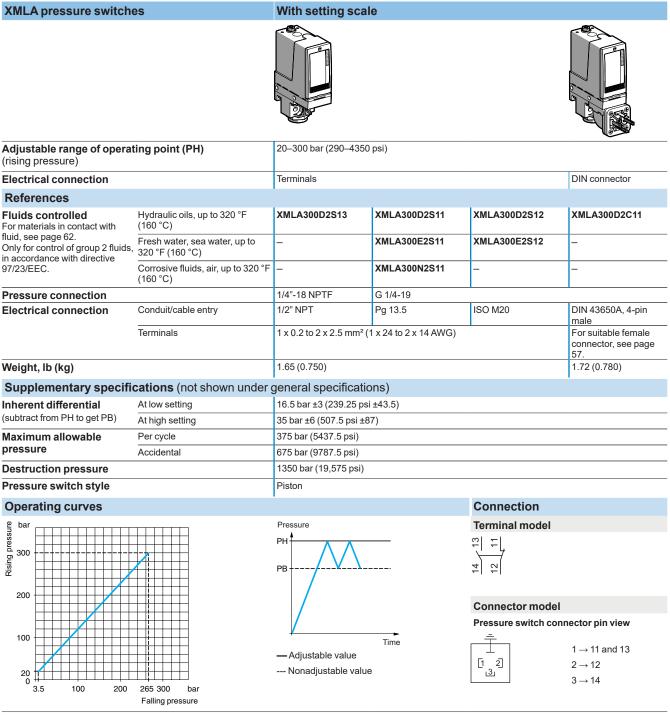
Size 160 bar (2320 psi) Adjustable differential, for regulation between two thresholds

2 C/O single-pole contacts

Supplementary specifications (not shown under general specifications) Possible differential (subtract from PH to get PB) Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Max. at high setting 110 bar (1590 psi) Max. at high setting 110 bar (1590 psi) Max. at high setting 20 bar (2900 psi) pressure Accidental 360 bar (5220 psi) Accidental Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10 ⁶ operating cycles Pressure switch style Piston Operating curves Piston Operating curves Pressure 1 Maximum differential 1 Maximum differential 2 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential 1 Maximum differential 1 Maximum differential	XMLC pressure switch	les	With setting scale	
(rising pressure) References Fluids controlled For materials in contact with fluid, see page 52 Fressure connection Electrical connection Conduit/cable entry Pg 13.5 ISO M20 Terminals Ix 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) Weight, Ib (kg) Inferential Min. at low setting Min. at high setting It 0 bar ±0.9 (130.5 pt ±13.05) Max. at high setting Pressure 300 bar ±0.9 (130.5 pt ±13.05) Max. at high setting Pressure Accidental Bobar (220 psi) Pressure switch style Pressure switch style Pressure switch style Pressure switch style Operating curves Pressure switch style Pressure Swi				
Fluids controlled Formaterials in contact with fuid, see page 62 Hydraulic oils, up to 320 °F (160 °C) XMLC160D2S11 XMLC160D2S12 Pressure connection G 1/4-19 G 1/4-19 ISO M20 Electrical connection Condult/cable entry Pg 13.5 ISO M20 Weight, Ib (kg) Terminals 1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) Supplementary specifications (not shown under general specifications) Min. at high setting 9 bar ±0.9 (130.5 psi ±13.05) Max. at high setting 110 bar (1590 psi) Max. at high setting 110 bar (1590 psi) Max. at high setting 100 bar (0200 psi) Accidental 360 bar (6220 psi) Destruction pressure Pre cycle 200 bar (2000 psi) Fressure Pressure switch style Piston Connection Connection Operating curves 1 Maximum 1 Maximum Pressure Pressure Operating curves 1 Maximum 1 Maximum Pressure Pressure Pressure Operating curves 1 Maximum 1 Maximum Pressure Pressure Pressure Operating curves 1 Maximum 1 Maximum Pressure Pre Quistable value <th></th> <th>ting point (PH)</th> <th>12–160 bar (174–2320 psi)</th> <th></th>		ting point (PH)	12–160 bar (174–2320 psi)	
For materials in contact with fluid, see page 62 Conduit/cable entry P13.5 ISO M20 Electrical connection Conduit/cable entry P13.5 ISO M20 Weight, Ib (kg) 1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) Supplementary specifications (not shown under general specifications) Possible differential (subtract from PH to get PB) Min. at low setting 9 bar 4.0 9 (30.5 psi ±13.05) Max. at low setting 110 bar (1590 psi) Max. at high setting 110 bar (1590 psi) Max. at high setting 110 bar (1590 psi) Entroperating cycles Entroperating cycles Pressure 200 bar (2200 psi) Z20 bar (10.440 psi) Entroperating cycles Entroperating cycles Pressure switch style Piston Piston Connection Entroperating cycles Operating curves 1 Maximum differential 2 minimum Pressure Plan Entroperating cycles Entroperating cycles Operating curves Page and	References		·	
Electrical connection Conduit/cable entry Pg 13.5 ISO M20 Weight, Ib (kg) 1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) 1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) Supplementary specifications (not shown under general specifications) Possible differential Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Max.at high setting 11 bar (1590 psi) Max.at high setting 110 bar (1590 psi) Maximum allowable Per cycle 200 bar (2900 psi) Accidental 360 bar (6220 psi) Destruction pressure 720 bar (10.440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Piston Destruction pressure 1 Maximum differential differenti	For materials in contact with	Hydraulic oils, up to 320 °F (160 °C)	XMLC160D2S11	XMLC160D2S12
Terminals 1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG) Weight, lb (kg) 1.65 (0.750) Supplementary specifications (not shown under general specifications) Possible differential (subtract from PH to get PB) Main. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Maximum allowable Per cycle Per cycle 200 bar (2200 psi) Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10.440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Piston Operating curves Pressure Maximum 1 Maximum differential 1 Maximum differential 1 Maximum differential 1 Maximum differential 0 bar (522 psi)	Pressure connection		G 1/4-19	
Weight, Ib (kg) 1.65 (0.750) Supplementary specifications (not shown under general specifications) Possible differential (subtract from PH to get PB) Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Max. at high setting 21 bar ±0.9 (304.5 psi ±13.05) 10 bar (1590 psi) Max. at high setting 110 bar (1590 psi) 10 bar (2200 psi) Max. at high setting 110 bar (1590 psi) 10 bar (2200 psi) Pressure Per cycle 200 bar (2200 psi) Accidental 360 bar (5220 psi) 10 bar (10.440 psi) Mechanical life (depending on the application) Pressure switch style Piston Operating curves Piston 1 Maximum differential afferential 1 Maximum differential afferential 1 Maximum differential afferential 1 Maximum differential afferential 1 Maximum differential	Electrical connection	Conduit/cable entry	Pg 13.5	ISO M20
Supplementary specifications (not shown under general specifications) Possible differential (subtract from PH to get PB) Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Max. at high setting 110 bar (1590 psi) Max. at high setting 110 bar (1590 psi) Max. at high setting 20 bar (2900 psi) pressure Accidental 360 bar (5220 psi) Accidental Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10 ⁶ operating cycles Pressure switch style Piston Operating curves Piston Operating curves Pressure 1 Maximum differential 1 Maximum differential 2 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential Pressure 0 0 1 Maximum differential 1 Maximum differential 1 Maximum differential		Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)	
Possible differential (subtract from PH to get PB) Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Maximum allowable pressure Max. at high setting 21 bar ±0.9 (304.5 psi ±13.05) Maximum allowable pressure Per cycle 200 bar (2900 psi) Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Pressure Maximum alifferential 1 Maximum differential 1 Maximum alifferential 1 Maximum differential	Weight, Ib (kg)		1.65 (0.750)	
Possible differential (subtract from PH to get PB) Min. at low setting 9 bar ±0.9 (130.5 psi ±13.05) Maximum allowable pressure Max. at high setting 21 bar ±0.9 (304.5 psi ±13.05) Maximum allowable pressure Per cycle 200 bar (2900 psi) Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Pressure Maximum alifferential 1 Maximum differential 1 Maximum alifferential 1 Maximum differential	Supplementary specifi	ications (not shown under ger	heral specifications)	
(subtract from PH to get PB) Min. at high setting Max. at high setting 110 bar (1590 psi) 200 bar (2900 psi) Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) Pressure switch style Piston Operating curves Particle of the application of	Possible differential	· · ·		
Maximum allowable pressure Per cycle 200 bar (2900 psi) Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Pressure Page of the pag	(subtract from PH to get PB)	Min. at high setting		
pressure Accidental 360 bar (5220 psi) Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10 ⁶ operating cycles Pressure switch style Piston Operating curves Connection Pressure Pressure Date of the style Pressure Definition of the application of the applicatio		Max. at high setting	110 bar (1590 psi)	
Destruction pressure 720 bar (10,440 psi) Mechanical life (depending on the application) 6 x 10° operating cycles Pressure switch style Piston Operating curves Connection Image: Destruction pressure Image: Destruction pressure Image: Destruction pressure Piston Operating curves Connection Image: Destruction pressure Image: Destruction pressure Image: Destruction pressure Connection Image: Destruction pressure Pressure Image: Destruction pressure	Maximum allowable	Per cycle	200 bar (2900 psi)	
Mechanical life (depending on the application) 6 x 10 ⁶ operating cycles Pressure switch style Piston Operating curves Connection Image: Second style Pressure Image: Second style Piston Image: Second style Piston Image: Second style Pressure Connection Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Second style Image: Sec	pressure	Accidental	360 bar (5220 psi)	
Pressure switch style Operating curves	Destruction pressure		720 bar (10,440 psi)	
Operating curves Connection Degree of the second	Mechanical life (depending	g on the application)	6 x 10 ⁶ operating cycles	
Pressure PH PH PH PH PH PH PH PH PH PH	Pressure switch style		Piston	
Pressure PH PH PH PH PH PH PH PH PH PH	Operating curves			Connection
	bar 100 50 12 0	differential 2 Minimum differential 2 Minimum differential	PH PB Time	J3 3 3 7 3
Falling pressure				

XML range

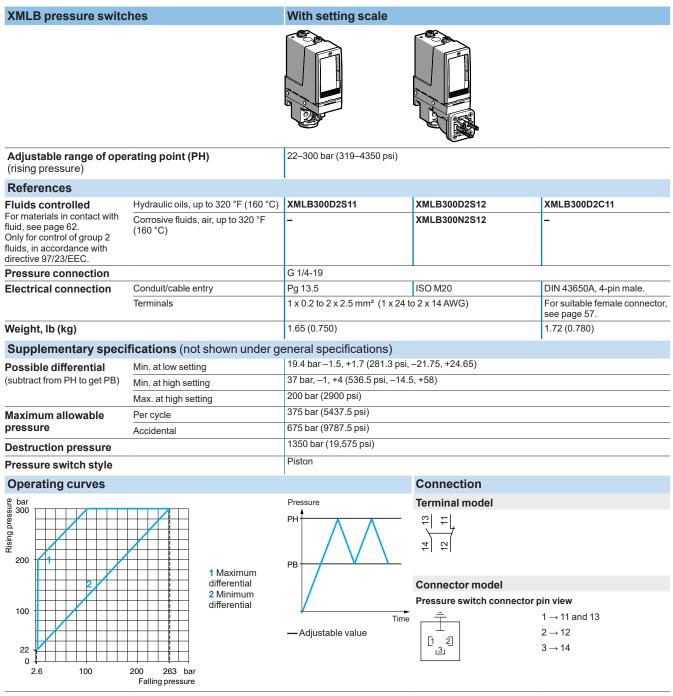
Siz	e 1	60	bar	(23	20	psi)	
_	-				-		


Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

XMLD pressure sw	vitches	Without setting scale	
Adjustable range of	2nd stage operating point (PH2)	16.5–160 bar (239.25–2320 psi)	
each operating point (rising pressure)	1st stage operating point (PH1)	10.5–154 bar (152.25–2233 psi)	
· · · ·	wo stages (PH2–PH1)	6–83 bar (87–1203.5 psi)	
References		1	
Fluids controlled For materials in contact with fluid, see page 62.	Hydraulic oils, up to 320 °F (160 °C)	XMLD160D1S13	
Pressure connection		1/4"-18 NPTF	
Electrical connection		1/2" NPT	
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)	
Weight, Ib (kg)		1.65 (0.750)	
	ecifications (not shown under ge		
Inherent differential (subtract from PH1/PH2	At low setting	8.8 bar ±1.5 (127.6 psi ±21.75)	
to get PB1/PB2)	At high setting	20 bar ±7 (290 psi ±101.5)	
Maximum allowable	Per cycle	200 bar (2900 psi)	
pressure	Accidental	360 bar (5220 psi)	
Destruction pressure		720 bar (10,440 psi)	
Pressure switch style)	Piston	
Operating curves			
	nts of contacts 1 and 2	Inherent differential of contacts 1 and 2	
	77 100 120 154 bar PH1 setting (rising pressure)	bar 154 140 100 100 100 100 100 100 100 100 10	Pressure PH2 PB2 PH1 PB1 Time Time Adjustable value Connection
1 Maximum differential		EF Contact 1 (stage 1)	Terminal model
2 Minimum differential		GH Contact 2 (stage 2)	Contact 2 (stage 2) Contact 1 (stage 1) $ \begin{array}{c c} & & \\ $

XML range

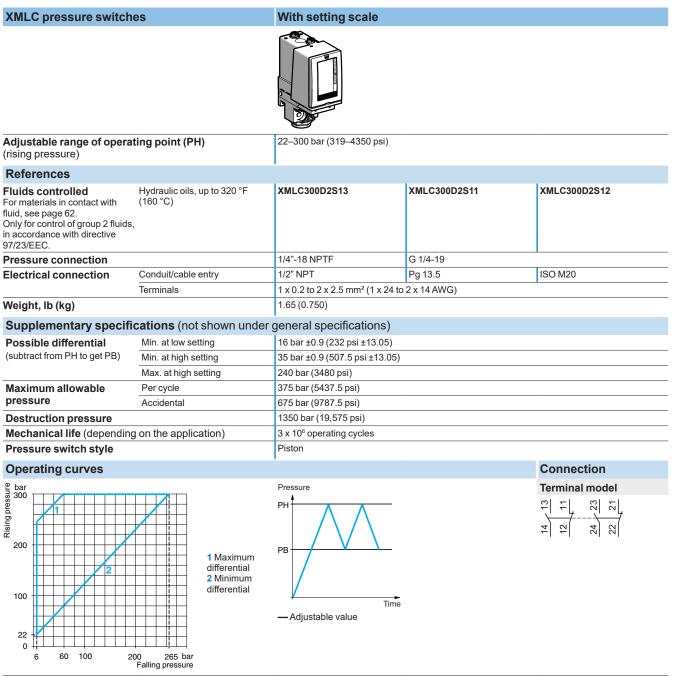
Size 300 bar (4350 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact



XML range

Size 300 bar (4350 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact



Other versions

XML range

Size 300 bar (4350 psi) Adjustable differential, for re

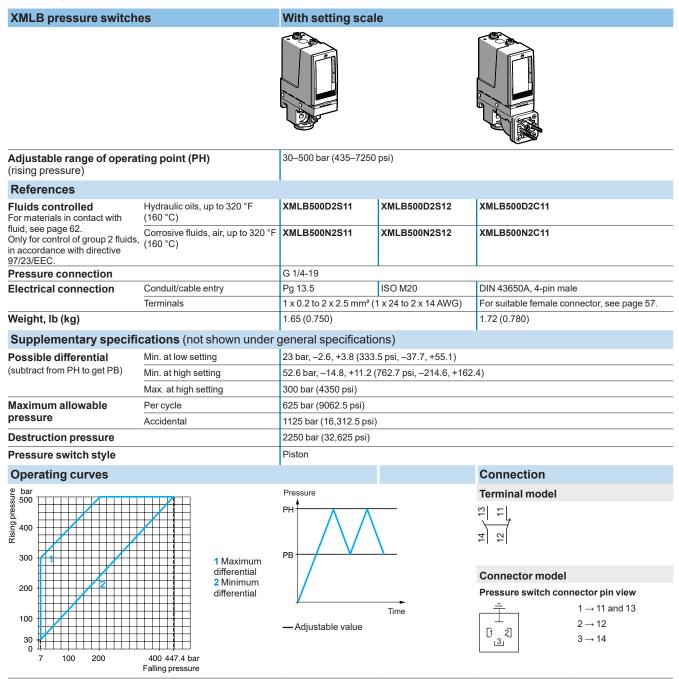
Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range

Size 500 bar (7250 psi) Fixed differential, for detection of a single threshold 1 C/O single-pole contact


XMLA pressure switche	With setting sca	le	Without setting scale			
Adjustable range of operat (rising pressure)	ing point (PH)	30–500 bar (435–7250) psi)			
References						
Fluids controlled For materials in contact with	Hydraulic oils, up to 320 °F (160 °C)	XMLA500D2S13	XMLA500D2S11	XMLA500D2S12	-	
fluid, see page 62. Only for control of group 2 fluids, in accordance with directive 97/23/EEC.	Corrosive fluids, air, up to 320 °F (160 °C)	-	XMLA500N2S11	-	XMLA500N2C11	
Pressure connection		1/4"-18 NPTF	G 1/4-19		1	
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	ISO M20	DIN 43650A, 4-pin male	
	Terminals	1 x 0.2 to 2 x 2.5 mm² (1 x 24 to 2 x 14 AWG)		For suitable female connector, see page 57.	
Weight, Ib (kg)		1.65 (0.750) 1.72 (0.780)				
Supplementary specific	cations (not shown under g	, general specification	ons)			
Inherent differential	At low setting	20 bar ±6 (290 psi ±87)	,			
(subtract from PH to get PB)	At high setting	45 bar ±10 (652.5 psi ±				
Maximum allowable	Per cycle	625 bar (9062.5 psi)				
pressure	Accidental	1125 bar (16,312.5 psi)				
Destruction pressure		2250 bar (32,625 psi)				
Mechanical life (depending	on the application)	3 x 10 ⁶ operating cycle	S			
Pressure switch style		Piston				
Operating curves		1		Connection		
 bar bar		Pressure PH PB — Adjustable value Nonadjustable value	Time	Terminal model $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \hline \\ \\ \\ \end{array} \\ \hline \\ \\ \\ \\$	nector pin view $1 \rightarrow 11 \text{ and } 13$ $2 \rightarrow 12$ $3 \rightarrow 14$	
10 100 200 300 Other versions	400 455 bar Falling pressure					

Other versions

XML range

Size 500 bar (7250 psi)

Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XML range

Size 500 bar (7250 psi)

Dual-stage, fixed differential, for detection at each threshold 2 C/O single-pole contacts (one per stage)

XMLD pressure switches		Without setting scale	
Adjustable range of each	2nd stage operating point (PH2)	41–500 bar (594.5–7250 psi)	
operating point (rising pressure)	1st stage operating point (PH1)	25–484 bar (362.5–7018 psi)	
Spread between the two stages (PH2–PH1)	16–244 bar (232–3538 psi)	
References			
Fluids controlled For materials in contact with fluid, see page 62. Only for control of group 2 fluids, in accordance with directive 97/23/EEC.	Hydraulic oils, up to 320 °F (160 °C)	XMLD500D1S11	
Pressure connection		G 1/4-19	
Electrical connection	Conduit/cable entry	Pg 13.5 conduit/cable entry	
	Terminals	1 x 0.2 to 2 x 2.5 mm ² (1 x 24 to 2 x 14 AWG)	
Weight, Ib (kg)		1.65 (0.750)	
Supplementary specification	is (not shown under general sp	pecifications)	
Inherent differential	At low setting	21 bar ±3 (304.5 psi ±43.5)	
(subtract from PH1/PH2 to get PB1/PB2)	At high setting	65 bar ±10 (942.5 psi ±145)	
Maximum allowable pressure	Per cycle	625 bar (9,062.5 psi)	
	Accidental	1125 bar (16,312.5 psi)	
Destruction pressure		2250 bar (32,625 psi)	
Pressure switch style		Piston	
Operating curves			
High setting trip points of contact	cts 1 and 2	Inherent differential of contacts 1 and 2	
bar 500 400 273.5 200 400 273.5 200 400 400 200 25 100 200 256 300 400 PH1 setting (risin		bar 0400 0	Pressure PH2 PB2 PH1 PB1 Time Time Time Time Connection Terminal model
1 Maximum differential		EF Contact 1 (stage 1)	Contact 2 Contact 1
2 Minimum differential		GH Contact 2 (stage 2)	(stage 2) (stage 1)
			22 24 13

Other versions

Selection and specifications (continued)

Electromechanical pressure and vacuum switches

XML range Accessories

XMLZL001

XZCC43FCP40B

Accessories for pressure switches and vacuum switches							
Description	Specific characteristics	For use with switches	Reference	Weight Ib (kg)			
Lead sealable protective cover to prevent unauthorized access to adjustment screws and fixing screw of switch cover	-	XMLA XMLB	XMLZL001	0.08 (0.035)			
Female connector, DIN 43650A	-	XML	XZCC43FCP40B	0.08 (0.035)			
Jumper cable, DIN 43650A - M12, straight male, for splitter boxes	1 m	XML	XZCR1523062K1	0.18 (0.080)			
Renewal parts							
Description	Specific characteristics	For use with switches	Catalog number	Weight Ib (kg)			
Diaphragms	-	XML•S35	XMLZL013	0.13 (0.060)			
		XML•S02	XMLZL014	0.09 (0.040)			

Connection

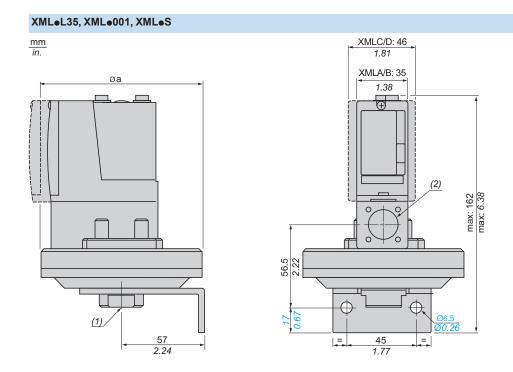
Connector pinout

XZCC43FCP40B

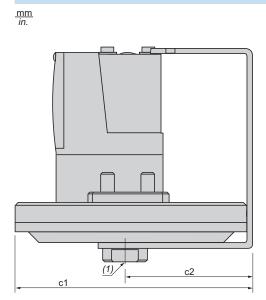
Cable connections

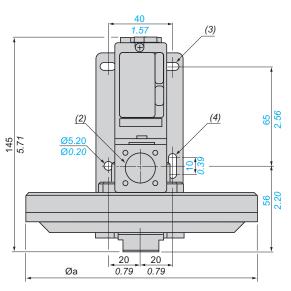
XZCC43F

ப^{__}


1

XZCC12F


XML range

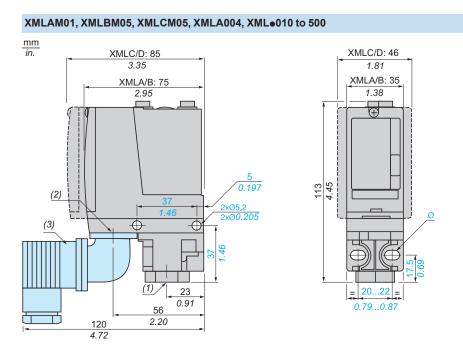


(1) 1 fluid entry, tapped G 1/4 (BSP female).

(2) 1 electrical connection entry, tapped M20 x 1.5, Pg 13.5, or 1/4"-18 NTP.

XMLBM03, XMLBL05

XML	Øa	c1	c2	
BM03	150 (5.91)	155.5 (6.12)	80.5 (3.17)	
BL05	200 (7.87)	204 (8.03)	104 (4.09)	
•L35, •001	110 (4.33)	_	_	
•S35, •S02, •S04	110 (4.33)	_	_	
•S10, •S20	86 (3.39)	_	_	

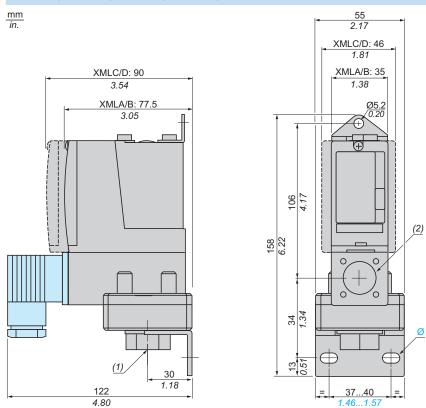

(1) 1 fluid entry, tapped G 1/4 (BSP female)

(2) 1 electrical connection entry, tapped M20 x 1.5, Pg 13.5, or 1/2" NTP

(3) 2 elongated holes Ø10.2 x 5.2 (0.40 x 0.20)

(4) 1 elongated hole Ø15.2 x 5.2 (0.60 x 0.20)

XML range

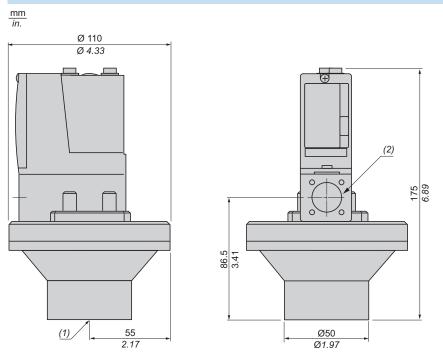

(1) 1 fluid entry, tapped G 1/4 (BSP female).

(2) 1 electrical connection entry, tapped M20 x 1.5, Pg 13.5, or 1/4"-18 NTP.

(3) DIN connector.

Ø: 2 elongated holes, Ø5.2 x 6.7

XMLeM02, XMLe002, XMLB004, XMLC004, XMLD004

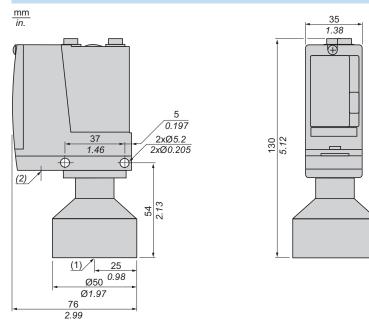

(1) 1 fluid entry, tapped G 1/4 (BSP female).

(2) 1 electrical connection entry, tapped M20 x 1.5, Pg 13.5, or 1/4"-18 NTP.

Ø: 2 elongated holes, Ø10.2 x 5.2

XML range

XMLBL35P, XMLB001P (for viscous products)



(1) 1 fluid entry, tapped G 1-1/4 (BSP female)

(2) 1 electrical connection entry, tapped M20 x 1.5 or Pg 13.5.

XML range

XMLBM05P, XMLA004P, XMLe010P, XMLe020P, XMLe035P (for viscous products)

(1) 1 fluid entry, tapped G 1-1/4 (BSP female)

(2) 1 electrical connection entry, tapped M20 x 1.5 or Pg 13.5.

Materials in contact with fluid

Electromechanical pressure and vacuum switches

XML range

Component Materials in Contact with Fluid								
Pressure or vacuum switch catalog number	Zinc alloy	Stainless steel	Brass	Steel	Nitrile	PTFE	FPM, FKM	Aluminium
XMLAM01Veeee, XMLeM02Veeee		(1)						
XMLAM01T		(2)						
XMLBM03Reeee								
XMLBM03S		(3)						
XMLeM05Aeeee		(1)						
XML•M05B••••		(1)						
XML•M05C••••		(1)						
XMLBM05		(1)						
XMLBL05Reeee								
XMLBL05S		(3)						
XMLeL35Reese, XMLeS35Reese		(1)						
XMLeL35Seeee		(3)						
XMLBL35Peeee		(1)						
XMLe001Reese		(1)						
XML=001S====		(3)						
XMLB001Peeee		(1)						
XML•002A••••								
XMLe002Beeee, XMLeS02Beeee								
XML•002C••••		(3)						
XMLA004A								
XMLA004Beeee								
XMLA004C		(2)						
XMLA004Peeee								

(1) 1.4307 (AISI 316L) (2) 1.4404 (AISI 316L)

Materials in contact with fluid

(3) 1.4305 (AISI 303)

Materials in contact with fluid (continued)

Electromechanical pressure and vacuum switches

XML range

Zinc alloy	Stainless steel (3)	Brass	Steel	Nitrile	PTFE	FPM, FKM	Aluminium
	(3)				-		
	(3)						
	(3)						
	(2)						
	(2)						
	(4)						
	(5)						
	(4)						
	(5)						
	(5)						
		(2) (2) (2) (4) (4) (5) (4) (5) (4) (5)	Image: state of the state	Image: state of the state	Image: state stat	Image: state of the state	Image: state of the state

Grade of Stainless Steel

Materials in contact with fluid

(1) 1.4307 (AISI 316L) (2) 1.4404 (AISI 316L)

(3) 1.4305 (AISI 303)

(4) 1.4404 (AISI 316L) + 1.4462

(5) 1.4404 (AISI 316L) + 1.4305 (AISI 303)

Introduction

9012G and 9016G industrial pressure and vacuum switches

9012G pressure switches

The 9012G pressure switches are UL Listed and CSA certified as industrial control equipment. They are used to interface pneumatic or hydraulic systems with electrical control systems by opening or closing electrical contacts in response to pressure changes in the system. They have outstanding repeatability and drift performance. Their efficient design uses durable, low mass components for excellent performance under heavy duty vibration and shock conditions.

The 9012G pressure switches line offers devices with either diaphragm or piston actuators—for optimum life, versatility, and speed of operation. Features include the following:

- High shock resistance
- High set-point stability
- Internal or external range adjustment
- Dual numerical range scale (psi and kPa)
 One or two SPDT double-break contacts
- Adjustable or fixed (nonadjustable)
- No drain line required
- differential
- Single-stage, dual-stage, or differentialpressure operation

A variety of modifications is available (see also page 69):

The 9012G diaphragm switches range from 0.2-675 psi falling pressure. Nitrile diaphragms and zinc-plated steel flanges are standard. Diaphragms of Viton[®] fluorocarbon or ethylene propylene are available as well as stainless steel flanges.

The 9012G piston-actuated switches range from 20-9,000 psi falling pressure. They have sealed pistons and can be used on air, water, oil, or any media compatible with the actuator material. The switches come standard with stainless steel pistons and housings, Viton diaphragms and O-ring seals, and Teflon[®] retaining rings. Ethylene propylene diaphragms and O-ring seals are also available.

The 9012G industrial pressure switches are available as open type or in NEMA 1 enclosures. The backplate is steel with a plastic cover. Open devices in pressure ranges up to 250 psi are available with internal- or external-threaded pressure connectors, ideally suiting them for panel mounting.

The 9012G machine tool pressure switches with NEMA 4, 4X, or 13 (IP66) cast aluminum enclosures are UL Listed and CSA certified as industrial control equipment. They are also UL Marine Listed for use on vessels greater than 65 ft long where ignition protection is not required.

The 9012G machine tool switches are also available in NEMA 7 & 9 cast aluminum enclosures. These are UL Listed for use in Class I, Divisions 1 and 2, Groups C and D, and Class II, Divisions 1 and 2, Groups E, F, G hazardous locations.

Application and general information

9012 pressure switches can generally be used in any application where electrical contacts must open or close in response to a system pressure change, within the electrical and pressure ratings of the switch. Pressure switches are used in a wide variety of applications such as the following:

- compressed air systems
- HVAC equipment
- chillers
- pumping systems
- machine tools
- stamping presses
- automatic grinders
- welders
- process equipment
- molding machines

Pressure switches typically perform one of the following two functions:

Monitoring the pressure in the system. The switch can be used either as an interlock that sequences operations in an automatic system, or to give an audio or visual signal, typically an alarm of an undesired condition, at predetermined pressures.

A switch with a **fixed** differential is generally used in these applications.

Controlling the pressure in the system by starting and stopping a pump or a compressor at predetermined pressures. A switch with an **adjustable** differential is usually needed in these applications.

9012G and 9016G industrial pressure and vacuum switches

9012G pressure switches

Diaphragm life

The elastomer diaphragms used on 9012G switches can withstand high speed cycling and wide pressure changes. They can tolerate operating speeds up to 200 cycles per minute with no negative impact on the life of the diaphragm.

Diaphragm life is affected by pressure medium compatibility. Standard diaphragms on 9012G devices are nitrile in zinc-plated steel flanges. Also available are Viton fluorocarbon and ethylene propylene diaphragms, as well as Type 316 stainless steel flanges.

The diaphragm can withstand wide pressure changes on each operating cycle. However, the pressure applied to the diaphragm during the normal operating cycle should never exceed the maximum value listed in the Range column in the catalog listing. Regularly cycling the pressure above this value reduces life considerably. If significant surges are common, or if pressures are higher than those listed in the Range column, consider using a piston device.

Piston life

For long piston life, the pressure medium should be filtered to keep foreign matter such as dirt and chips out of the piston assembly. 9012G sealed piston devices are not recommended for use on dry gas media, since this usage could cause some leakage past the seal. Depending on the gas, the media pressure, and the rate of operation, the amount of leakage could render the switch inoperable. (Note, however, that some weepage of the media is necessary to lubricate the seals. This small amount of weepage does not indicate a problem.)

Surges

One of the most destructive conditions for a pressure switch is hydraulic surge. A surge is a high rate of rise in pressure, normally of short duration, caused by starting a pump or by opening and closing a valve. Extremely high rates of rise in pressure can be damaging even if they are within the limits of the maximum allowable pressure.

To limit the effect of surges, the switch should be mounted as close to an accumulator and as far from the pump or quick acting valve as possible. The 9012G piston-actuated switches have a 0.020 in. pressure orifice to help reduce the effects of minor surges. 9012G diaphragm-actuated switches have a 0.060 in. pressure orifice. A restrictor with a small orifice placed in the line between the switch and the pump or valve will further help to protect the switch.

Vibration

Among other things, excessive vibration can cause contact bounce, chatter, or premature contact transfer, especially when system pressure is near the operating point of the switch. Remote mounting of the switch is the best way to avoid problems.

Use on steam

Switches should not be applied directly on steam exceeding 15 psig. However, with steam capillary tubing installed between the pressure connection and the switch, steam pressure up to 250 psig can be applied—provided this does not exceed the maximum allowable pressure rating of the switch or the maximum temperature rating at the actuator. Refer to the instruction bulletin supplied with the device.

Dual-stage operation

The 9012G dual-stage pressure switches provide two distinct levels of control from one device. These switches are most commonly used where dual functions are required, or in sequencing applications such as alarm-shutdowns.

Differential-pressure operation

The 9012G pressure switches for differential-pressure sensing can monitor changes in the difference between two pressures. These unidirectional devices signal that a predetermined pressure difference was reached, resulting from a widening or narrowing of the difference between two pressures.

Introduction (continued) technical overview

9012G and 9016G industrial pressure and vacuum switches

9012G pressure switches

Piston- vs. diaphragm-actuated devices

Whether to select a piston or diaphragm device depends on several criteria:

- maximum allowable pressure
- range and differential
- surges
- medium (whether hydraulic or pneumatic)

Maximum allowable pressures for piston devices are much higher than for diaphragm devices. Most diaphragm devices have a maximum allowable pressure of 850 psi or less, whereas all piston devices have a maximum allowable pressure of 10,000 psi or more.

Range and differential for diaphragm devices are lower than for piston devices. Many applications call for a low differential, such as 20 psi. This may exclude piston devices, which have a minimum differential of 60 psi or more.

Surges are a part of every hydraulic system. While many are small and have only a small effect on the switch, some are significant and can potentially destroy a pressure switch. Diaphragm devices are the most sensitive to surges and are most easily damaged. Piston devices are more tolerant of surges and last longer in the same application.

Hydraulic systems, which typically use oil-based media, are more demanding applications than pneumatic systems. Pressure switches used in hydraulic applications typically experience higher pressures, have wider pressure variations, and produce more surges, since the medium does not compress. Pneumatic systems, which typically use air, place fewer demands on a system, since these applications typically experience lower pressures and the medium can compress, cushioning the effects of surges. Table 1 offers basic guidelines for determining the selection of a piston- versus a diaphragm-operated pressure switch.

Piston vs. diaphragm					
Maximum allowable pressures	High	Piston			
Maximum anowable pressures	Lower	Diaphragm			
Duranturan	High pressures	Piston			
Pressures	Low differentials or pressures	Diaphragm			
Summer	Constant	Piston			
Surges	Minimal	Diaphragm or piston			
Madia	Hydraulic systems	Piston			
Media	Pneumatic systems	Diaphragm			

Operating points (set points)

Pressure switches have two operating points:

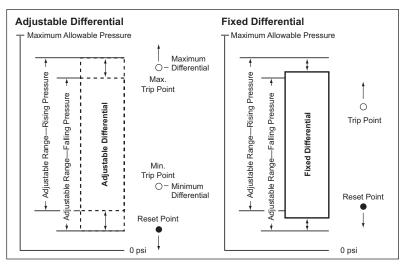
- Increasing pressure (rising pressure)
- Decreasing pressure (falling pressure)

These operating points are also called the set points of the switch.

Differential

The *differential* is the difference in pressure between the rising and falling pressure points. It can be adjustable or fixed.

Range


The *range* refers to the pressure limits within which the operating points (settings) can be adjusted. The range of the 9012G pressure switch is tied to the decreasing pressure operating point. Adding the differential to the decreasing pressure operating point determines the increasing pressure operating point.

Technical overview (continued)

9012G and 9016G industrial pressure and vacuum switches

9012G pressure switches

Differential

Fixed differential

To determine the operating range on rising pressure for a fixed differential switch, add the differential to the decreasing pressure operating point. For example, to determine the range on **increasing** pressure for a 9012GDW5 switch:

- Range on decreasing pressure = 3 to 150 psi
- Fixed differential = 6.0 ± 0.8 psi
- Range on increasing pressure = 9 ± 0.8 to 156 ± 0.8 psi

Adjustable differential

For adjustable differential switches, add the minimum differential to the low end of the range and the maximum differential to the high end of the range. For example, to determine the range on **increasing** pressure for a 9012GAW5:

- Range on decreasing pressure = 3 to 150 psi
- Adjustable differential = 6.0 to 30 psi
- Range on increasing pressure = 9 to 180 psi

During the normal operating cycle, system pressure should never exceed the upper limit of the range when using a diaphragm-actuated switch. This greatly reduces the life of the diaphragm. For optimum life, operate the switch in the middle 80% of the range.

Maximum allowable pressure

Maximum allowable pressure is the pressure to which a switch can be subjected without causing a change in operating characteristics, shift in settings, or damage to the device.

System pressure surges may occur during machine startup or from valve operation. Surges are not normally detrimental to the life of a switch if the surge is within the maximum allowable pressure rating of the switch. Diaphragm-actuated switches should not be subjected to more than 10 surges per day. More frequent surges greatly reduce the life of the diaphragm.

Technical overview (continued)

9012G and 9016G Industrial pressure and vacuum switches

9012G pressure and 9016G vacuum switches

Environment	
Environmental specifica	ations
Conformity to standards	C€, UKCA, IEC 60947.4.1, UL 508, CSA C22-2 n°14
Product certifications	UL Listed and CSA certified as industrial control equipment
Protective treatment	Marine use: HT (does not apply to 9016GVG)
Fluids controlled	Air, water, hydraulic oils, gases, steam (depending on the model)
Materials	Cast aluminum enclosures (9012 NEMA 1 and 9016 GVG are stamped metal enclosure and molded cover)
Operating position	Operates in all positions
Shock resistance	50 g
Degree of protection	Depends on the model
Operating rate (operating cycles/minute)	120 operations/minute max. 9016GVG: 60 operations/minute max.
Repeat accuracy	±2.0% (does not apply to 9016GVG)
Drift	±1.0% of the adjustable range over 1 million operations
Pressure connection	G1/4 (BSP) female, 1/4"-18 NPTF, or 1/2"-14 NPT
Electrical connection	1/2"-14 NPTF, Pg13.5, or ISO M20 (also, 3/4"-14 NPTF available only on NEMA 7 and 9). NEMA 1 is 1/2" conduit entry, unthreaded.

Contact arrangement

9012G and 9016G machine tool and vacuum switches (except GVG)

Тур	be	Contact arrangement	Contact symbol
Single Pole Double Throw (SPDT)		1 N.O., 1 N.C.	Same Polarity
Snap switch contains t	wo double-break cont	act elements (1 N O 1 N C) that must be us	sed on circuits of the same

Snap switch contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

Double Pole	2 N.O., 2 N.C.	4 W L
		Same Same
Double Throw		Polarity
(DPDT)		- Polarity
()		
		Polarity
		56 78

Snap switch contains two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O. and 1 N.C.) that must be used on circuits of the same polarity.

Circuit ratings											
	Continuous AC-50 or 60 Hz							DC			
Contacts	carrying amperes	SolutionInductive 35% power factorResistive, 75% power factor		· · · · ·	je (V)	Inductive and resistive					
Col		Voltage	Mako A	e VA	Brea A	k VA	Make and break amperes	Voltage	Make and bre Single throw		
SPDT	10	120	60	7200	6	720	6	125	0.55	0.22	
	10	240	30	7200	3	720	3	250	0.27	0.11	
	10	480	15	7200	1.5	720	1.5	301-600	0.10	-	
	-	600	12	7200	1.2	720	1.2	(1)			
DPDT	10	120	60	7200	6	720	6	125	0.22	0.22	
	10	240	30	7200	3	720	3	250	0.11	0.11	
	10	480	15	7200	1.5	720	1.5	600	-	-	
	-	600	12	7200	1.2	720	1.2	-	_	-	

(1) Continuous carrying ampere rating does not apply. Acceptable wire sizes: 12-22 AWG. Recommended terminal clamp torque: 7 lb-in Not recommended for use on circuits below 24 V, 20 mA.

Electrical Ratings—9016GVG

Voltoro		DC	
Voltage	Single Phase	Polyphase	DC
110 V	2 hp	3 hp	1 hp
220 V	3 hp	5 hp	1 hp
440-550 V	5 hp	5 hp	-
32 V	-	-	0.5 hp

Note: Control Circuit Rating: A600

Technical overview (continued)

Differential-Pressure

Piston

9012G and 9016G industrial **pressure and vacuum switches** 9012G pressure switches

Interpreting the commercial reference (excluding 9016GVG) Use this table for interpretation only. Some combinations are not available.				9012G	Δ	R		2	2		
Designation					Commer			erence	_	-	
	Pressure Switch				9012G						
Classification	Vacuum Switch				9016G						
		Diaphra	gm, Low Pressure—	Adjustable		Α					
			gm, High Pressure—	-Adjustable		в					
Actuator Type— Differential Type			ston—Adjustable			С					
	Machine Tool		gm, Low Pressure—			D					
		Diaphragm, High Pressure—Fixed Piston—Fixed			E				-		
		Diaphragm, Low Pressure—Adjustable			F G				-		
	Differential-Pressure				H	_			-		
		Piston— Adjustable			J	-			-		
		Diaphragm, Low Pressure—Adjustable				ĸ				-	
		Diaphragm, High Pressure—Adjustable			L				-		
			Adjustable	,		м					
		Diaphra	gm, Low Pressure—	Adjustable		Ν					
		Diaphragm, High Pressure—Adjustable				Ρ					
	Single-Stage	Piston—Adjustable				Q					
	Industrial		gm, Low Pressure—			R					
			aphragm, High Pressure—Fixed			S					
		Piston-	Fixed			Т	6				
	1						G				
Enclosure, NEMA Type	Open 7, 9						0 R				
	7,9 4,4X,13					+	W			-	
	1/4"-18 NPTF					-	~~	blank		-	
Threads	Metric					+		M		-	
	Single-pole, double-th	hrow				+			blank		
Contacts	Double-pole, double-					-			2		
	1 2			0.2-10						1	
				1-40						2	
		Single o	Single or Dual Stage, Low Pressure 1.5-75 3-150							4	-
										5	
	Dionbroam	5-250							6		
	Diaphragm	Single	r Dual Stage, High P	13-425						1	
Pressure		Olligie o	Dual Otage, High I	20-675						2	
Range (psi)		Differential-Pressure, Low Pressure							1		
(per)		0-175							4		
		Differential-Pressure, High Pressure 0-500							1		
		20-1000				-				1	
	Distor	Single o	Single or Dual Stage 90-2900							2	
	Piston	Differential-Pressure 0-5000							3 4		
									4		
				0-5000						1 1	
/acuum (inHg	Diaphragm	Single S	tage, Low Pressure	0-25						2	
	_			0.20							See tables on pages 75, 7
Options	Factory modifications	and acces	ssories								and 83
	chine tool pressu	re swit	ches for sing	le-stage oper	ation						
9012G ma											
			s on acorcasii	- · ·		۸d	iuc	table	lifferer	ntia	I Pressure code
Pressure ra	nge (psi)—Contact	schang	Pango (noi)	Fixed different	2		juS	capie C	merer	nud	Fiessure code
Pressure ra		s chang	Range (psi)	Fixed differenti	al		2				1
Pressure ra	nge (psi)—Contact	schang	0.2-10	0.6±0.1	al	0.6					1
Pressure ra	inge (psi)—Contact: Switch style Single or Dual Stage,	schang	0.2-10 1-40	0.6±0.1 1.6±0.4	al	0.6 1.6	-8				2
Pressure ra	inge (psi)—Contact Switch style	schang	0.2-10 1-40 1.5-75	0.6±0.1 1.6±0.4 3.0±0.5	al	0.6 1.6 3.5	-8 -15	0			2 4
Pressure ra	inge (psi)—Contact: Switch style Single or Dual Stage,	schang	0.2-10 1-40 1.5-75 3-150	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8		0.6 1.6 3.5 6.0	-8 -15 -30.				2 4 5
Pressure ra	inge (psi)—Contact: Switch style Single or Dual Stage,	s chang	0.2-10 1-40 1.5-75 3-150 5-250	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5		0.6 1.6 3.5 6.0 10.	-8 -15 -30. 0-4§				2 4 5 6
Pressure ra Actuator	inge (psi)—Contact: Switch style Single or Dual Stage,		0.2-10 1-40 1.5-75 3-150 5-250 13-425	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5		0.6 1.6 3.5 6.0 10. 16-	-8 -15 -30. 0-49 90)			2 4 5 6 1
Pressure ra Actuator	inge (psi)—Contact Switch style Single or Dual Stage, .ow Pressure		0.2-10 1-40 1.5-75 3-150 5-250 13-425 20-675	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5 27±5		0.6 1.6 3.5 6.0 10. 16- 27-	-8 -15 -30. 0-49 90 -130)			2 4 5 6 1 2
Pressure ra Actuator	inge (psi)—Contact Switch style Single or Dual Stage, .ow Pressure	Pressure	0.2-10 1-40 1.5-75 3-150 5-250 13-425 20-675 0-75	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5		0.6 1.6 3.5 6.0 10. 27- 0.2	-8 -15 -30. 0-49 90 130 5-10)			2 4 5 6 1 2 1
Diaphragm	inge (psi)—Contact Switch style Single or Dual Stage, .ow Pressure Single or Dual Stage, High P	Pressure	0.2-10 1-40 1.5-75 3-150 5-250 13-425 20-675 0-75 0-175	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5 27±5 0.25±10 		0.6 1.6 3.5 6.0 10. 16- 27- 0.2 0.5	-8 -15 -30. 0-49 90 130 5-10 -36)			2 4 5 6 1 2 1 4
Diaphragm	inge (psi)—Contact Switch style Single or Dual Stage, ow Pressure Single or Dual Stage, High F	Pressure	0.2-10 1-40 1.5-75 3-150 5-250 13-425 20-675 0-75 0-175 0-500	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5 27±5 0.25±10 		0.6 1.6 3.5 6.0 10. 16- 27- 0.2 0.5 3-1	-8 -15 -30. 0-49 90 130 5-10 -36 75)			2 4 5 6 1 2 1 4 4
Pressure ra Actuator	inge (psi)—Contact Switch style Single or Dual Stage, .ow Pressure Single or Dual Stage, High P	Pressure	0.2-10 1-40 1.5-75 3-150 5-250 13-425 20-675 0-75 0-175	0.6±0.1 1.6±0.4 3.0±0.5 6.0±0.8 10.0±1.5 16±3.5 27±5 0.25±10 		0.6 1.6 3.5 6.0 10. 16- 27- 0.2 0.5 3-1 89-	-8 -15 -30. 0-49 90 130 5-10 -36)			2 4 5 6 1 2 1 4

The 9012G single-stage pressure switches are control-circuit rated devices. These switches are used in pneumatic or hydraulic systems on a wide variety of machine and process applications to protect the equipment. They either control or monitor the system pressure.

578±110

788±140

170-5600

270-9000

0-5000

3

4

1

578-1260

788-1900

15-825

9012G and 9016G industrial pressure and vacuum switches

9012G machine tool pressure switches

9012GDW1

Single-Stage Operation

Class 9012 single-stage pressure switches are control circuit rated devices used in pneumatic or hydraulic systems on a wide variety of machine and process applications to protect the equipment and control or monitor the system pressure.

- Type G machine tool switches are available with NEMA 4, 4X, and 13 (IEC IP66) enclosure ratings.
- The NEMA 7 and 9 devices are UL listed for use in the following hazardous locations: Class I, Divisions 1 and 2, Groups C and D; and Class II, Divisions 1 and 2, Groups E, F, and G.
- NEMA 4, 4X, and 13 devices are suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or nonhazardous locations only.
- Enclosure materials are cast aluminum.
- To ensure repeatability and minimize setting drift, pressure settings should fall within the middle 80 percent of the pressure range.

	Fixe	ed c	liffe	rent	tial	
--	------	------	-------	------	------	--

NEMA 4 AV 13 Enclo

	IA 4, 4X, 13 Enclosur isted and CSA Certifie		ol Equipment						
Range on decreasing pressure psig		Approximate differential at mid-range, psig (1)	Maximum allowable pressure, psig	Class 9012 Type SPDT	DPDT				
Diap	hragm actuated—Nitril	e diaphragm, zinc plate	ed steel housing						
0.2-10		0.6 ± 0.1	100	9012GDW1	_				
1-40		1.6 ± 0.4	100	9012GDW2	9012GDW22				
1.5-75		3.0 ± 0.5	240	9012GDW4	-				
3-150		6.0 ± 0.8	475	9012GDW5	9012GDW25				
5-250		10.0 ± 1.5	750	9012GDW6	-				
13-425	5	16 ± 3.5	850	9012GEW1	-				
20-675	5	27 ± 5	2000	9012GEW2	-				
	n actuated—#440 stair stainless steel housing		diaphragm and O-rii	ng, Teflon® retainin	g ring				
20-100	00	59±9	10,000	9012GFW1	_				
90-290	00	170 ± 15	15,000	9012GFW2	9012GFW22				
170-56	600	289± 55	20,000	9012GFW3	-				
Spee	cifications								
-	controlled	Air, water, hydraulic oils, ga	ases, steam (depending	on the model)					
Pressure connection		1/4"-18 NPTF is standard. For metric threads, add M after the W on all types (2). Other options are available (see page 75).							
Neigh	t (approximate)	3 lb (1.36 kg)							
Voltage limits		600 V							
	uous current	10A							
	ical connections	1/2"-14 NPTF (standard), For Pg 13.5, or ISO M20, see footnote (2).							
-100011		CE, UKCA, IEC 60947.4.1,	•		a an ahina/yaaaa				
Standa	ards/Ratings	greater than 65 ft long wher			se on snips/vesse				
Temp	perature ratings	Minimum	Maximum						
Ambie	ent	-23 °C (-10 °F)	+85 °C (+185 °F)						
	Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)						
Media		-26 °C (-15 °F)							
	All with Form Q4	-26 °C (-15 °F)							
Operating curves		Contact blocks	Connection						
ω١	Max. Differential	1 N.O., 1 N.C.							
Rising Pressure	Fixed Differential Min. Differential	2N.O., 2N.C.	Red						
L	Falling pressure	Same La Same L	Form H10 ORG WHT OT 4 80 BLK 04 32 10 2 60 10 10 10 10 10 10 10 10 10 10 10 10 10	Form H11 ORG GRN # CORD GRN # CORD G CORD G CORD G CORD CORD GRN # CORD GRN # CORD GRN # CORD CORD CORD CORD CORD CORD CORD CORD					
	snap switches contain two d			L.■MHT					

SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. Acceptable wire sizes: 12-22 AWG Recommended terminal clamp torque: 7 lb-in

(1) The differential adds to the range setting and determines the operating point on rising pressure.

(2) To order a Pg13.5 electrical conduit entry and a 1/4"-19 BSP pressure connection, add M12 to the end of the commercial reference, as well as adding "M" after "W" for metric threads. For example: 9012GAW1 = 1/2" NPT electrical conduit entry and 1/4"-19 BSP pressure connection 9012GAWM1 = 20 x 1.5 mm electrical conduit entry and 1/4"-19 BSP pressure connection 9012GAWM1M12 = Pg13.5 electrical conduit entry and 1/4"-19 BSP pressure connection

9012G and 9016G industrial **pressure and vacuum switches** 9012G machine tool pressure switches

OL LISTED AND ODA	Certified as Industrial Contr				
Range on Decreasing Pressure, psig	Adjustable Differential (1) Approximate at Mid Range	Maximum Allowable Pressure, psig	Class 9012 T SPDT	ype DPDT	
Diaphragm Actuated—	Nitrile Diaphragm, Zinc Plated	Steel Housing			
0.2-10	0.7-2	100	9012GAW1	9012GAW21	
1-40	2.4-8	100	9012GAW2	9012GAW22	
1.5-75	3.9-15	240	9012GAW4	9012GAW24	
3-150	6.6-30	475	9012GAW5	9012GAW25	
5-250	11-49	750	9012GAW6	9012GAW26	
13-425	20-82	850	9012GBW1	9012GBW21	
20-675	35-130	2000	9012GBW2	9012GBW22	
) Stainless Steel Piston. ousing, Viton® Fluorocarbon D	ionbroom and O ring	Toflon® Dotoin	ing Ping	
			1		
20-1000	65-200	10,000	9012GCW1	9012GCW21	
90-2900	187-560	15,000	9012GCW2	9012GCW22	
170-5600	425-1050	20,000	9012GCW3	9012GCW23	
270-9000	580-1500	25,000	-	9012GCW24	
Specifications					
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)				
Pressure Connection	1/4"-18 NPTF is standard. For metric electrical connection), add M after th connections, see page 75 (1).				
Weight (approximate)	3 lb (1.36 kg)				
Voltage Limits	600 V				
Continuous Current	10A				
Electrical Connections	Inections 1/2"-14 NPTF is standard. For metric threads (G1/4 BSP female pressure connection and M20 electrical connection), add M after the W in the commercial reference (2).				
Standards/Ratings	C€, UKCA, IEC 60947.4.1, UL 508, C greater than 65 ft long where ignition		Listed for use or	n ships/vessels	
Temperature Ratings	Minimum	Maximum			
Ambient	-23 °C (-10 °F)	+85 °C (+185 °F)			
Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)			
Media Piston	-26 °C (-15 °F)				
All with Form Q4	-26 °C (-15 °F)				
Operating Curves	Contact Blocks	Connection			
		Form H17			
Bisson Max. Differential Adjustable Differential Min. Differential	1 N.O., 1 N.C. 2 N.O., 2 N.O.,	FBrown			
Falling pressure	2 N.C.	Form H10	Form H11		
(1 N.O., 1 N.C.) that must be	n two double-break contact elements used on circuits of the same polarity. n two electrically separated sets of			-	

(1) The differential adds to the range setting and determines the operating point on rising pressure.

(1) The differential adds to the range setting and determines the operating point of rising pressure.
 (2) To order a Pg13.5 electrical conduit entry and a 1/4"-19 BSP pressure connection, add M12 to the end of the commercial reference, as well as adding "M" after "W" for metric threads. For example:
 9012GAW1 = 1/2" NPT electrical conduit entry and 1/4"-19 BSP pressure connection
 9012GAWM1 = 20 x 1.5 mm electrical conduit entry and 1/4"-19 BSP pressure connection
 9012GAWM1M12 = Pg13.5 electrical conduit entry and 1/4"-19 BSP pressure connection

9012GAR4

Adjustable Differential

9012G and 9016G industrial pressure and vacuum switches

9012G machine tool pressure switches

	on Decreasing Ire, psig	Adjustable Differential (1) Approximate at Mid Range	Maximum Allowable Pressure, psig	Class 9012 T			
			1 0	SPDT	DPDT		
	agm Actuated—I	litrile Diaphragm, Zinc Plated	-				
1.5-75		8-15	240	9012GAR4	9012GA		
3-150		16-30	475	9012GAR5	9012GA		
5-250		23-49	750	9012GAR6	-		
13-425		36-82	850	9012GBR1	-		
		Stainless Steel Piston. using, Viton® Fluorocarbon Di	aphroam and O ring. T	oflon® Potainiu	a Pina		
#303 3 90-2900	laimess Steer HO	281-560	15,000	9012GCR2			
170-5600)	638-1050	20,000	9012GCR2	_		
	fications	030-1030	20,000	3012GCR3	-		
-							
	ontrolled	Air, water, hydraulic oils, gases, ste		el)			
	e Connection	1/4"-18 NPTF (standard) or 1/2"-14	NPT. See page 75.				
	approximate)	10 lb (4.54 kg)					
Voltage		600 V					
	ous Current						
		1/2"-14 NPTF, 3/4"-14 NPTF	004.000.0.044.18	1			
Stanuar	ds/Ratings	C€, UKCA, IEC 60947.4.1, UL 508, CSA C22-2 n°14. UL Marine Listed for use on vessels lon than 65 ft where ignition protection is required.					
Tempe	rature Ratings	Minimum	Maximum				
•							
Ambient							
		-23 °C (-10 °F)	+85 °C (+185 °F)				
Ambient Media	Diaphragm	-23 °C (-10 °F) -40 °C (-40 °F)					
	Diaphragm Piston	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F)	+85 °C (+185 °F)				
Media	Diaphragm Piston All with Form Q4	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F)	+85 °C (+185 °F) +120 °C (+250 °F)				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks	+85 °C (+185 °F) +120 °C (+250 °F) Connection				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F)	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17				
Media Operat	Diaphragm Piston All with Form Q4	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. II	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ✓ Brown				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Adjustable Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 Red ↓ 4 Brown Red ↓ 4 C (C)				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Adjustable Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ✓ Brown				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Adjustable Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 Red ↓ 4 Brown Red ↓ 4 C (C)				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves Differential Adjustable	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. 	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ↓ Brown Red ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				
Media Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Differential Inf. Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ↓ Brown Red ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Form H11			
Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Adjustable Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. 	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ✓ Brown Red ↓ 4 4 2 2 6 4 Black ↑ 1 ★ Blue Form H10	ORC			
Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Differential Inf. Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. Same Polarity 2 N.O., 2 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17	ORG			
Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Differential Inf. Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. Same Polarity 2 N.O., 2 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17 ✓ Brown Red ↓ 4 4 2 2 6 4 Black ↑ 1 ★ Blue Form H10				
Operat	Diaphragm Piston All with Form Q4 ing Curves ax. Differential Differential Inf. Differential	-23 °C (-10 °F) -40 °C (-40 °F) -26 °C (-15 °F) -26 °C (-15 °F) Contact Blocks 1 N.O.,1 N.C. Same Polarity 2 N.O., 2 N.C.	+85 °C (+185 °F) +120 °C (+250 °F) Connection Form H17	ORG			

SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. **DPDT** snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

Acceptable Wire Sizes: 12-22 AWG Recommended Terminal Clamp Torque: 7 lb-in

(1) The differential adds to the range setting and determines the operating point on rising pressure.

Listed G•W, G•O, G•G Listed Haz. Loc., G•R Listed Marine Use, G•W

CE

Certified Class 3211-03 G•W, G•O, G•G Certified Class 3218-02 G•R

Differential-Pressure Operation

9012G and 9016G industrial **pressure and vacuum switches** 9012G pressure switches for

differential-pressure operation

Pressure switches for differential-pressure operation are used to monitor the change in the difference between two pressures. The 9012G differential-pressure switches are unidirectional devices and are used in applications to signal that a predetermined pressure difference has been reached as a result of a widening or increasing difference between the two pressures. They can also be used in applications to signal that a predetermined pressure difference has been reached as a result of a narrowing or decreasing difference between the two pressures.

9012GJW1

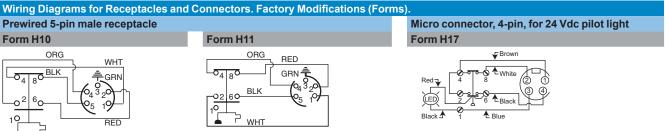
NE	ustable differenti MA 4, 4X, 13 Encl Listed and CSA C		Control Equipn	nent		
Rang	king Pressure le on decreasing per) actuator	Adjustable Difference on Decreasing Pressure (Adds to working pressure) Y (lower) actuator	Adjustable Differential Actuates on increasing pressure (adds to adjustable difference)	Maximum Allowable Pressure	Class 9012	Type DPDT
Diap	hraam Actuated—	Nitrile Diaphragm, Zinc	Plated Steel Hous	sina		
)-75		0.25-10	1-2	100	9012GGW1	9012GGW2
0-175	5	0.5-36	5.6-15	240	9012GGW4	9012GGW24
)-500)	3-175	26-90	850	9012GHW1	9012GHW2
Spe	cifications					
-	s Controlled	Air, water, hydraulic oils, ga	ses steam (dependir	a on the model)		
	sure Connection	1/4"-18 NPTF is standard. I M20 electrical connection), For other options, see page	or metric threads (G add M after the W in	1/4 BSP female pre		on and
-	ht (approximate)	3 lb (1.36 kg)				
	ge Limits	600 V				
	nuous Current	10 A		-	-	
	rical Connections	1/2"-14 NPTF (standard), F				
stand	lards/Ratings	C€, UKCA, IEC 60947.4.1, I than 65 ft long where ignitic			ted for use on v	essels greater
Tem	perature Ratings	Minimum	Maximum	Juliou.		
mbi		-23 °C (-10 °F)	+85 °C (+185 °F)			
ledia	a Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)			
	Piston	-26 °C (-15 °F)				
	All with Form Q4	-26 °C (-15 °F)				
Ope	rating Curves	Contact Blocks		Connection		
Rising Pressure	Max. Differential Adjustable Differential Min. Differential Falling pressure	1 N.O., 1 N.C. Same Polarity 2 N.O., 2 N.C. Same Polarity Same Polarity Same			Black Black Blue	m H11
		n two double-break contact el			WHT OR ≤GRN G7100	G [GRN 表
1 N.C DPD eleme doubl of the	C.) that must be used on T snap switches contair ents allowing use on cir	a circuits of the same polarity. a two electrically separated s cuits of opposite polarity. Eac ants (1 N.O., 1 N.C.) that must 12-22 AWG	ets of contact ch set contains two	Recommended Terminal Clamp		BLK 4320 WHT 7 lb-in

Listed Marine Use

Certified Class 3211-03

9012G and 9016G industrial pressure and vacuum switches

9012G dual-stage pressure switches


9012GKW2

Dual-Stage Operation

The 9012G dual-stage pressure switches are designed for use in applications where two separate pressure operations must be controlled by a single pressure monitoring device. These controls are most commonly used where dual functions are required or in sequencing applications such as alarm shutdowns. The spread between the two stages is adjustable, but the differential between the high (rising) and low (falling) operating points of each stage is fixed.

NEMA 4, 4X, and 13 devices are suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or nonhazardous locations only.

Pressu which	e Setting ire limits between Stage 1 can be ed to operate on	Adjustable Spread Add to the range setting to obtain the decreasing operating point of Stage 2	Fixed Different Add to the low oper obtain the approxi operating point for	erating point to mate high	Maximum Allowable Pressure	SP Sta		
	ising pressure	oporating point of orago 2	Stage 1	Stage 2		Ту		
Diaph	ragm Actuated-	-Nitrile Diaphragm, Zinc I						
1-40	inagini totaatoa	4.4-20	4.0 ± 1.0	6.0 ± 1.5	100	90		
1.5-75		6.6-30	6.0 ± 1.5	8.0 ± 2.0	240	90		
3-150		13.2-75	8.0 ± 2.0	12±3	475	90		
5-250		24.2-110	14 ± 3	21±5	750	90 [.]		
Pisto	n Actuated—#440	Stainless Steel Piston.						
		ousing, Viton [®] Fluorocar	bon Diaphragm	and O-ring, Te	flon [®] Retaining	a Rin		
90-290	0	176-800	140 ± 30	210 ± 52	15,000	90		
170-56	00	360-1700	275 ± 60	400 ± 100	20,000	901		
Spec	ifications							
Fluids	Controlled	Air, water, hydraulic oils, gas	es steam (dependir	ng on the model)				
	re Connection	1/4"-18 NPTF is standard. Fo			n all types			
		Other options are available (in all types.			
Weight	(approximate)	3 lb (1.36 kg)						
Voltage	e Limits	600 V						
Contin	uous Current	10 A	10 A					
Electri	cal Connections	1/2"-14 NPTF (standard), Fo	or Pg 13.5, or ISO M	20, see footnote (2) on page 7			
Standa	rds/Ratings	CE, UKCA, IEC 60947.4.1, U than 65 ft long where ignition			sted for use on ve	essels		
Temp	erature Ratings	Minimum	Maximum					
Ambie	ent	-23 °C (-10 °F)	+85 °C (+185 °F)					
	Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)	1				
Media	Piston	-26 °C (-15 °F)						
	All with Form Q4	-26 °C (-15 °F)						
Opera	ating Curves	Contact Blocks						
Pressure	Max. Differential	1 N.O., 1 N.C.		Acceptable Win 12-22 AWG	re Sizes:			
Pre	Fixed Differential	μ μ μ		Recommended	Terminal Clamp	Tore		
p D		Same		7 lb-in	•			
Rising	Min. Differential	Polarity						
		4 0						
L	F alling and a s							
	Falling pressure							
					UK			
(UL	LISTED	CERTIFIED	CE		ČÀ			

9012G and 9016G

Industrial pressure and vacuum switches 9012G machine tool modifications and renewal parts

9012G Machine Tool	Factory Modifications (Forms)			
Modification		Applies to	Form	
Lock on rising pressure, ma	anual reset only	Available on GDW, GDWM, GEW, GEWM, GFW, GFWM only	E3	
120 Vac or Vdc neon pilot lig	ght	Available on all GAW-GMW and clear lens GAWM-GFWM red lens	G17 G18	
24 Vdc only LED		For pilot light conversion kits: <u>clear lens</u> See 9998PC306-308 red lens	G21 G22	
24 Vdc LED pilot light with g	green lens	Class 9012 GAW-GMW and GAWM-GFWM, or Class 9016 GAW	G23	
SPDT snap switch rated 1.1	A at 125 Vdc (minimum differential doubles)	Available on GAR-GFR, GAW-GJW, and GAWM-GFWM		
	acle: Brad Harrison #41310 or interchangeable ur convenience. For use with Brad Harrison 41307, 41308 or equal	Available on GAW-GJW single pole devices only. See wiring diagrams on page 80.		
Micro connector, 4-pin, for 2	24 Vdc pilot light (see diagram on page 80)	G•W (single pole only), except GAW2 and Form B2.	H17	
External range adjustment	With knob	GAW-GFW, GAWM-GFWM, and GKW-GMW	К	
with range scale window	Slotted for screwdriver	GAW-GFW, GAWM-GFWM, and GKW-GMW	K1	
Pg 13.5 conduit thread and	1/4"-19 BSP pressure connection	GAW-GFW and GKW-GMW	M12	
#316 stainless steel flange	Standard nitrile diaphragm	GAR, GBR, GDR, GER, GAW, GBW, GDW, GEW, GGW, GHW, GAWM, GBWM, GDWM, GEWM, GKW, GLW, except Types 1 and 21		
	Ethylene propylene diaphragm	Available on all GGW, GHW except GGW-1, 21. Available on all GAR, GBR, GDR, GER, GAW, GBW, GDW, GEW, GAWM, GBWM, GDWM, GEWM, GKW, GLW, except Types 1 and 21	Q3	
	Viton [®] fluorocarbon diaphragm	GAR, GAW, GBR, GBW, GDR, GDW, GER, GEW, GGW, GHW, GAWM, GBWM, GDWM, GEWM, GKW, GLW, except Types 1 and 21	Q4	
Range scale window (standa	ard with Forms K and K1)	GAW-GMW, GAWM-GFWM	V1	
	cified (If indicating only one special setting, on increasing or decreasing pressure.)	All 9012G	Y1	
Pressure connection	1⁄4"-18 NPT external thread	GAR, GAW, GDR, GDW, GGW, GKW		
Not available in combination with Forms Q1, Q3, Q4	1/2"-14 NPT external thread, 1/4"-18 NPTF internal thread	GAR, GAW, GDR, GDW, GGW, GKW	Z16	
	7/16"-20 UNF-2B internal thread	GAR-GFR; GAW-GMW		
	tches, Factory Modifications (Form al parts kits, see the table below.	ns) for Renewal Parts Kits, Class 9998		
Modification		Applies to Parts Kit Type	Form	
SPDT snap switch rated 1.1	A at 125 Vdc (minimum differential doubles)	PC313	H3	
#316 stainless steel flange	Standard nitrile diaphragm	PC177-179, PC268, 269	01	
		PC265-267	Q1	
	Ethylene propylene diaphragm	PC177-178, PC268, 269		
		PC266, 267	Q3	
	Viton [®] fluorocarbon diaphragm	PC177-178, PC268, 269	0.1	
		PC265-267	Q4	
Pressure connection	1⁄4"-18 NPT external thread	PC265-269	Z	
	1∕2"-14 NPT external thread, 1∕4"-18 NPTF internal thread	PC265-269	Z16	
	7/16"-20 UNF-2B internal thread			

Selection and specifications

9012G and 9016G industrial **pressure and vacuum switches** 9012G industrial pressure switches

9012GRG5

Оре	d Differential n Type or NEMA isted and CSA C	1 Enclosure ertified as Industrial Contr	ol Equipment				
	je on Decreasing sure, psig	Approximate Differential (1) At Mid Range, psig	Maximum Allowable Pressure, psig	Class 9012 T Open Type	ype NEMA 1		
Diapl	hragm Actuated—N	litrile Diaphragm, Zinc Plated	Steel Housing				
1.5-75		2.2 ± 0.4	240	9012GRO4	9012GRG4		
3-150		4.2±1	475	-	9012GRG5		
		Stainless Steel Piston. using, Viton® Fluorocarbon Di	aphragm and O-Ring,	Teflon [®] Retair	ning Ring		
20-10	00	49 ± 10	10,000	-	9012GTG1		
Specifications							
Fluids	Controlled	Air, water, hydraulic oils, gases, stea	am (depending on the mode	el)			
Pressu	ure Connection	ection 1/4"-18 NPTF (standard), 1/2"-14 NPT, or 7/16"-20 UNF-2B. See Forms table on page 77.					
Neigh	t (approximate)	Type 1 : 2 lb (0.91 kg); Open : 1.7 lb (0.77)					
/oltag	e Limits	600 V					
Contin	uous Current	10 A					
Electri	cal Connections	1/2" conduit entry, unthreaded					
Standa	ards/Ratings	C€, UKCA, IEC 60947.4.1, UL 508, 0	CSA C22-2 n°14				
Temp	perature Ratings	Minimum	Maximum				
Ambie	nt	-23 °C (-10 °F)	+85 °C (+185 °F)				
Media	Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)				
	Piston	-26 °C (-15 °F)					
	All with Form Q4	-26 °C (-15 °F)					
Oper	ating Curves	Contact Blocks					
ssure	Max. Differential	SPDT Form C contacts	Acceptable Wire Sizes: 12-22 AWG				
Rising Pressure	Fixed Differential Min. Differential	° 	Recommended Terminal 7 Ib-in	Clamp Torque:			
	Falling pressure						

(1) Determines the operating point on rising pressure.

CE

Certified Class 3211-03

9012G and 9016G industrial **pressure and vacuum switches** 9012G industrial pressure switches

9012GNO5

9012GNG1

ULLI	isted and CSA C	ertified as Industrial Cont	rol Equipment		
Range		Approximate Mid Range (1) Differential (adds to the	Maximum Allowable Pressure psig	Class 9012 Ty	ре
psig	asing riessure	decreasing set point)	Flessule psig	Open Type	NEMA 1
Diaph	ragm Actuated—	Nitrile Diaphragm, Zinc Plated	d Steel Housing		
0.2-10		0.6-1.0	100	-	9012GNG1
1-40		1.6-5.0	100	-	9012GNG3
1.5-75		2.5-6.5	240	9012GNO4	9012GNG4
3-150		4.8-13	475	9012GNO5	9012GNG5
5-250		8.5-20.5	750	9012GNO6	9012GNG6
13-425		20-41	850	-	9012GPG1
20-675		35-66	2000	-	9012GPG2
		Stainless Steel Piston. using, Viton® Fluorocarbon E	Diaphragm and O-Ring	g, Teflon® Retai	ning Ring
20-1000	0	56-98	10,000	-	9012GQG1
90-2900	0	162-308	15,000	-	9012GQG2
170-560	00	355-563	20,000	-	9012GQG3
Spec	ifications				
Fluids (Controlled	Air, water, hydraulic oils, gases, ste	eam (depending on the mo	del)	
Pressu	re Connection	1/4"-18 NPTF (standard), G1/4 (BS	SP) female, or 1/2"-14 NPT	See Forms in the	e table below.
Weight	(approximate)	Type 1: 2 lb (0.91 kg); Open: 1.7 lb	(0.77)		
Voltage	e Limits	600 V			
Continu	uous Current	10 A			
Electric	cal Connections	1/2" conduit entry, unthreaded			
Standa	rds/Ratings	CE, UKCA, IEC 60947.4.1, UL 508,	CSA C22-2 n°14		
Tempe	erature Ratings	Minimum	Maximum		
Ambier	nt	-23 °C (-10 °F)	+85 °C (+185 °F)		
	Diaphragm	-40 °C (-40 °F)	+120 °C (+250 °F)		
Media	Piston	-26 °C (-15 °F)			
	All with Form Q4	-26 °C (-15 °F)			
Opera	ating Curves	Contact Blocks			
۳I	Max. Differential Adjustable Differential	SPDT Form C contacts	Acceptable Wire Sizes: 12-22 AWG		
Rising	Min. Differential		Recommended Termina	I Clamp Torque:	

Falling pressure

(1) Determines the operating point on rising pressure.

Modificati	on	Applies to	Form
Diaphragm	Standard Nitrile in #316 stainless steel housing	GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q1
	Ethylene propylene in #316 stainless steel housing	Not available on GNG, GNO, GRG, GRO1. Available on all other GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q3
	Viton [®] fluorocarbon in #316 stainless steel housing	GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q4
Pressure connection	1/4"-18 NPT external thread	GNG, GNO, GRG, GRO	Z
	1/2"-14 NPT external thread, 1/4"-18 NPTF internal thread. Standard actuator only.	GNG, GNO, GRG, GRO	Z16
	7/16"-20 UNF-2B internal thread	GNG, GNO, GPG, GPO, GQG, GQO, GRG, GRO, GSG, GSO, GTG, GTO	Z18

9012G and 9016G industrial pressure and vacuum switches

9016G vacuum switches Control applications

9016GAW2

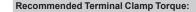
9016GAW Switches for Sensitive Control Applications

9016GAW vacuum switches have double throw contacts. Normally open and normally closed circuits allow the use of these controls for standard or reverse action applications.

Standard controls can be mounted from the front using the bracket provided. Two mounting screws are required for firm attachment to any smooth, flat surface. Allowance must be made for flange projection.

Controls with the Form F modification include two mounting feet with 9/32" mounting holes on 3-3/4 in. centers. The Range and Differential adjustments are accessed by removing the front cover.

Maximum allowable positive pressure: 100 psig.


- Diaphragms are oil resisting, nitrile butadiene rubber (Buna-N).
- For electrical ratings and temperature limitations, see table on page 68.

For dimensions and modifications, see page 80.

		0		-4			
9016GAW Vacuum			_ · · ·				
Range on Decreasing Vacuum (inHg)	Adjustable Differ Adds to Range (* @ Minimum Range		Contact Arrangement	Pipe Tap (NPTF)	Class 9016 Type NEMA Enclosure Type 4, 4X & 13		
0.00.7	0.8-9	1.3-7.4					
0-28.7 0-25			1 N.O1 N.C. 1 N.O1 N.C.	1/4"-18 1/4"-18	9016GAW1 9016GAW2		
0-25	5-20 5-20				9016GAW2		
0-26.3			2 N.O2 N.C. 2 N.O2 N.C.	1/4"-18 1/4"-18	9016GAW21		
Specifications	5-20	5-20	2 N.O2 N.C.	1/4 - 10	9016GAW22		
-							
Fluids Controlled	oils, gases, steam (de						
Pressure Connection	NEMA 4, 4X & 13: 1/ See Forms table on NEMA 7 & 9: 1/4" NF		d), G1/4 (BSP) fen	nale, or 1/2"-14	NPT.		
Weight (approximate)	Type 4, 4X, and 13:	3 lb (1.36 kg); Type 7	& 9: 10 lb (4.54 kg))			
Voltage Limits	600 V						
Continuous Current	10 A		-				
Electrical Connections	NEMA 4, 4X & 13: 1, NEMA 7 & 9: 3/4"-14						
Standards/Ratings	CE, UKCA, IEC 6094	7.4.1, UL 508, CSA C	22-2 n°14				
Temperature Ratings	Minimum		Maximum				
Ambient	-23 °C (-10 °F)		+85 °C (+185 °F)				
Diaphragm	-40 °C (-40 °F)		+120 °C (+250 °F)				
Media Piston	-26 °C (-15 °F)		_				
All with Form Q4	-26 °C (-15 °F)						
Operating Curves	Contact Blocks	Contact Blocks		Connection			
· · · · · · · · · · · · · · · · · · ·	1 N.O., 1 N.C.		Form H17				
Max. Differential Adjustable Differential Min. Differential	2 N.O., 2 N.C.	° • • • • • • • • • • • • • • • • • • •	Red 4 8 4 8 LED 2 6 Black 1 4	Blue			
Falling pressure	Same Polarity در م		Form H10		Form H11		
SPDT snap switches conta (1 N.O., 1 N.C.) that must b DPDT snap switches conta elements allowing use on c two double-break contact e on circuits of the same pola	e used on circuits of the in two electrically separ ircuits of opposite polar lements (1 N.O., 1 N.C.	e same polarity. rated sets of contact ity. Each set contains					

two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

12-22 AWG

(1) Add the Differential to the Range to obtain the operating point on increasing vacuum (within vacuum limitations). The differential increases linearly over the range. The minimum differential doubles with NEMA 7 & 9 enclosures.

Acceptable Wire Sizes:

Listed Marine Use

Certified Class 3211-06

9016GVG Power Switches

pumps. Electrical ratings of float and vacuum switch types are equal.

9012G and 9016G industrial pressure and vacuum switches 9016G vacuum switches

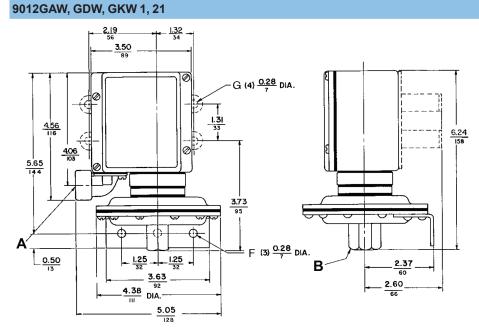
Power applications

The 9016GVG1 is designed as a companion to the 9036GG float switches in common use on vacuum heating

9016GVG1J09E

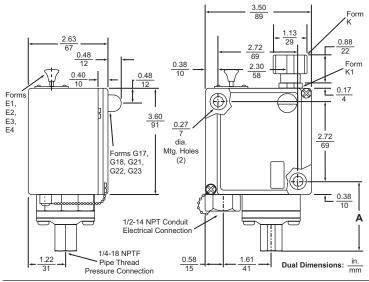
9016GVG1J10F

For dimensions and modifications, see page 80.								
NEMA	/G Vacuum Switch 1 Enclosure ts Open on Increas			cations				
Cut- Out Range, inHg	Approximate Adjustable Differential, inHg	Cut-In Range, inHg	Poles	Pressure Connection	Vacuum Setting, inHg	NEMA 1 Enclosure Class 9016 Type (1)		
5-25	5-10 inHg	0-20	2	1/4"-18 NPSF	3-8	9016GVG1J09•		
					16.5-25	9016GVG1J10•		
					17-22	9016GVG1J11•		
					18-23	9016GVG1J12•		
					20-25	9016GVG1J13•		
					Specify other vacuum (minimum order quantity: 4 pieces)	9016GVG1J99•		
Specifi	cations							
Fluids Co	ntrolled	Air, water, hydraulic oils, gases, steam (depending on the model)						
Pressure	Connection	1/4"-18 NPTF (standard), G1/4 (BSP) female, or 1/2"-14 NPT. See Forms table, pages 642 and 643.						
Max. Allow	vable Positive Pressure	100 psig						
Weight (a	oproximate)	2 lb (0.91)						
Voltage Li	mits	600 V						
Continuo	us Current	10 A						
Electrical	Connections	3 knockouts for 1/2" conduit						
Standards	-	C€, UKCA, IEC 60947.4.1, UL 508, CSA C22-2 n°14						
Tempera	ature Ratings	Minimum			Maximum			
Ambient		-23 °C (-10	°F)		+85 °C (+185 °F)			
	Diaphragm	-40 °C (-40	°F)		+120 °C (+250 °F)			
Media	Piston	-26 °C (-15	°F)					
	All with Form Q4	-26 °C (-15	'					
	ng Curves	Contact Blocks						
Break Differential Max Differential Differential Min. Differential				Acceptable Wire Sizes: 8-14 AWG Recommended Terminal Clamp Torque: 22-27 lb-in				


For other ratings and specifications, see page 68.

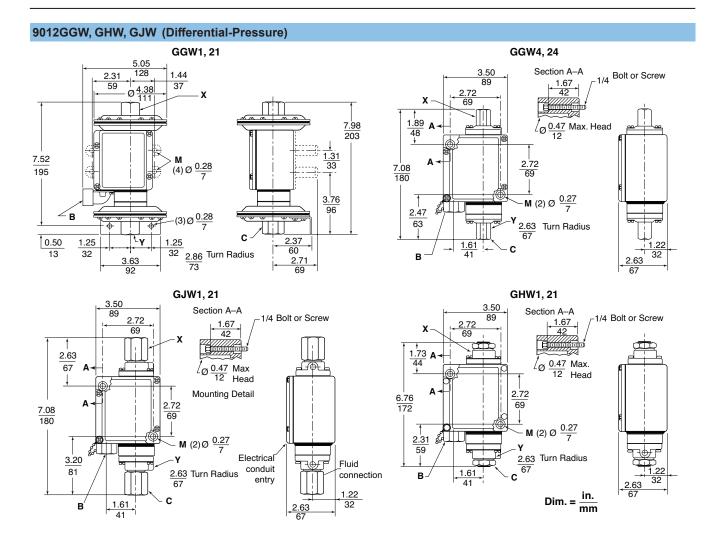
Falling pressure

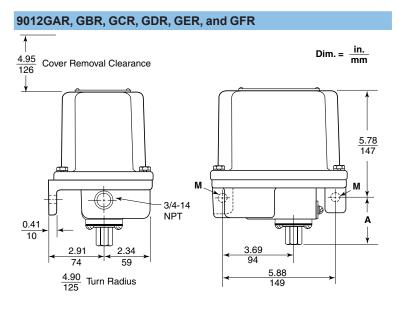
Description	Form			
3-way lever plus nameplate with marking: <i>Float only—Vacuum and Float—Continuous</i> (factory modification only)	Е			
Mounting bracket (for retrofit, order 9049A53 bracket kit)				
Reverse action, normally open contacts				
1/4 in. male pipe connection (1/4"-18 NPT, external thread) (for retrofit, use 1/4" pipe nipple)	Z			


9012G and 9016G industrial **pressure and vacuum switches** 9012G pressure switches

Machine Tool Pressure Switch Dimensions

A: Conduit connection: G•W = 1/2-14 NPT; G•WM = 20mm BS4568, Form M12 = Pg13.5; DIN40430. B: Pressure connection: G•W = 1/4"-18 NPTF; G•WM = 8; Form M14 = G 1/4 BS 2779; RP1/4 ISO 711; R 1/4 DIN 2999; GJ 1/4 UN1339.

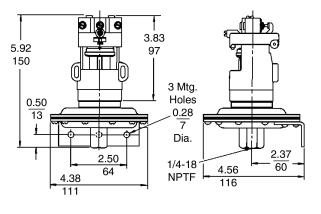

Туре	Dimension A, in. (mm)
GAW, GDW, GKW 2, 4, 5, 6, 22, 24, 25, 26	2.33 (59)
GBW, GEW, GLW 1, 2, 21	2.23 (57)
GCW, GFW, GMW 1, 2, 3, 4, 21,. 22, 23, 24	3.15 (80)

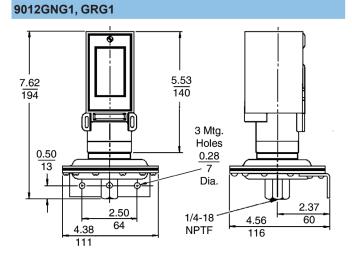

NOTE: Dimensions change with metric thread.

For flange and mounting bracket dimensions for low pressure device, see figure on page 83.

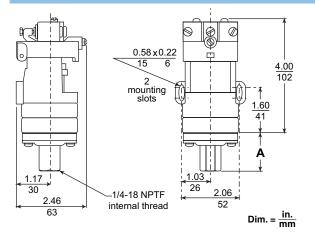
9012G and 9016G industrial pressure and vacuum switches

9012G pressure switches

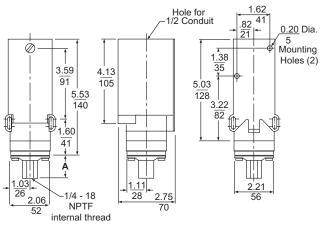



Dimension A for 9016G•R Switches		
Туре	Dimension A, in. (mm)	
GAR4, 5, 6, 24, 25, 26	1.42 (36)	
GBR1, 2, 21, 22; GCR1, 21	1.32 (34)	
GCR2, 3, 4, 22, 23, 24	2.24 (57)	
GDR1, 2, 21, 22	2.02 (56)	
GDR4, 5, 6, 24, 25, 26	1.42 (36)	
GER1, 2, 21, 22; GFR1, 21	1.32 (34)	
GFR2, 3, 4, 22, 23, 24	2.24 (57)	

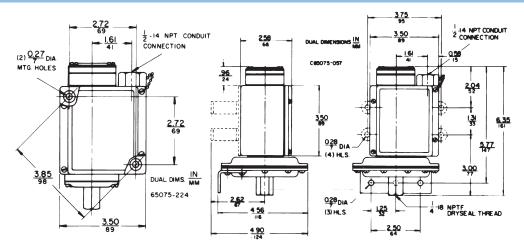
9012G and 9016G industrial pressure and vacuum switches

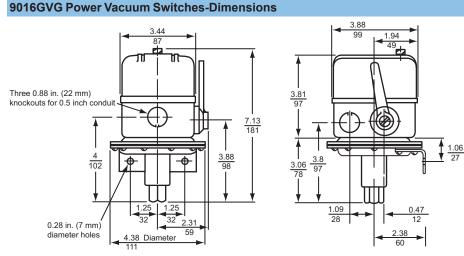

9012G pressure switches

9012GNO1, GRO1



9012GNO, GRO


9012GNG, GPG, GQG, GRG, GSG, and GTG


Dimension A for 9012G•O Switches		Dimension A for 9012G•G Switches	
9012	Dimension A, in. (mm)	9012	Dimension A, in. (mm)
GNO, GRO 3, 4, 5, 6	1.41 (36)	GNG, GRG 3, 4, 5, 6	1.41 (36)
GPO, GSO 1, 2, 3	1.31 (33)	GPG, GSG 1, 2, 3	1.31 (33)
GQO, GTO 1, 2, 3, 4	2.24 (57)	GQG, GTG 1, 2, 3, 4	2.24 (57)

9012G and 9016G industrial pressure and vacuum switches 9016G vacuum switches

Vacuum Switch Dimensions and Modifications 9016GAW Control Vacuum Switches—Dimensions

9016GAW Vacuum Switches—Available Modifications	
Description	Form
Mounting feet (GAW 1, 21 only)	F
Viton [®] diaphragm with #316 stainless steel flange	Q4
Range scale window (standard with Forms K and K1)	V1
Special setting specified (If indicating only one special setting, specify whether this setting is on increasing or decreasing pressure.)	Y1
1/4"-18 NPT external thread pressure connection	Z
1/2"-14 NPT external thread, 1/4"-18 NPTF internal thread pressure connection (standard actuator only)	Z16

9016GVG Vacuum Switches-Available Modifications	
Description	Form
3-way lever plus nameplate with marking: Float only-Vacuum and Float-Continuous (factory modification only)	E
Mounting bracket (for retrofit, order 9049A53 bracket kit)	F
Reverse action, normally open contacts	R
1/4 in. male pipe connection (1/4"-18 NPT, external thread) (for retrofit, use 1/4" pipe nipple)	z

Industrial pressure and vacuum switches XML, 9012G and 9016G

Product reference index

#		9012GCW2 ²
9012GAR4	72	9012GCW2
9012GAR5	72	9012GCW2
9012GAR6	72	
9012GAW1	72	9012GCW24
		9012GDW22
9012GAW2	71	9012GDW2
9012GAW4	71	9012GFW22
9012GAW5	71	9012GGW2
9012GAW6	71	9012GGW2
9012GBR1	72	9012GHW2
9012GBW1	71	9016GAW21
9012GBW2	71	9016GAW22
9012GCR2	72	9016GVG1J
9012GCR3	72	9016GVG1J
9012GCW1	71	9016GVG1J
9012GCW2	71	9016GVG1J
9012GCW3	71	9016GVG1J
9012GDW1	70	9016GVG1J
9012GDW2	70	
9012GDW4	70	X
9012GDW5	70	XMLZL001
9012GDW6	70	XMLZL014
9012GEW1	70	XMLA001R
9012GEW2	70	XMLA001S2
9012GFW1	70	XMLA002A
9012GFW2	70	XMLA002A
9012GFW3	70	XMLA002A
9012GGW1	73	XMLA002C
9012GGW4	73	XMLA004A
9012GHW1	73	XMLA004A
9012GKW2	73	XMLA004B
9012GKW2	74	XMLA010A
		XMLA010A
9012GKW5	74	XMLA010A
9012GKW6	74	XMLA010A
9012GMW2	74	XMLA010B
9012GMW3	74	XMLA010C
9012GNG1	77	XMLA020A
9012GNG3	77	XMLA020A
9012GNG4	77	XMLA020A
9012GNG5	77	XMLA020A
9012GNG6	77	XMLA020B
9012GNO4	77	
9012GNO5	77	XMLA020B
9012GNO6	77	XMLA020B
9012GPG1	77	XMLA020C
9012GPG2	77	XMLA035A
9012GQG1	77	XMLA035A
9012GQG2	77	XMLA035A
9012GQG3	77	XMLA035B
9012GRG4	76	XMLA035B
9012GRG5	76	XMLA035C
9012GRO4	76	XMLA070D
9012GTG1	76	XMLA070D
9016GAW1	78	XMLA070D2
9016GAW2	78	XMLA070D
9012GAR24	78	XMLA070E2
9012GAR25		XMLA070E2
	72	XMLA070N2
9012GAW21	71	XMLA070N
9012GAW22	71	XMLA160D
9012GAW24	71	XMLA160D
9012GAW25	71	XMLA160D
9012GAW26	71	XMLA160D
9012GBW21	71	XMLA160E2
9012GBW22	71	

W21	71	XMLA160N2C11
W22	71	XMLA160N2S11
W23	71	XMLA300D2C11
W24	71	XMLA300D2S11
W22	70	XMLA300D2S12
W25	70	XMLA300D2S13
W22	70	XMLA300N2S11
W21 W24	73 73	XMLA500D2S13 XMLA500N2C11
W24	73	XMLAS00N2C11 XMLAM01V2S11
W21	78	XMLB001R2S11
W22	78	XMLB002A2S11
G1J09•	79	XMLB002A2S12
G1J10•	79	XMLB002B2S11
G1J11●	79	XMLB004A2C11
G1J12•	79	XMLB004A2S11
G1J13•	79	XMLB004A2S12
G1J99•	79	XMLB004A2S13
		XMLB004B2S11
001	57	XMLB010A2C11
)14	57	XMLB010A2S11
01R2S11	25	XMLB010A2S12
01S2S11	25	XMLB010A2S13
02A2C11	27	XMLB010B2S11
)2A2S11	27	XMLB010C2C11
)2A2S12	27	XMLB010C2S11
)2C2S11	27	XMLB020A2S11
)4A2C11	30	XMLB020A2S12
04A2S13	30	XMLB020A2S13 XMLB020B2S11
04B2S11	30	XMLB020B2S11 XMLB020C2S11
10A2C11	33	XMLB020C2S12
10A2S11	33	XMLB035A2C11
10A2S12	33	XMLB035A2S11
10A2S13	33	XMLB035B2S11
10B2S11	33	XMLB070D2S11
10C2S11	33	XMLB070N2S11
20A2C11 20A2S11	37 37	XMLB160D2C11
20A2S12	37	XMLB160D2S11
20A2S12	37	XMLB160D2S12
20B2C11	37	XMLB160N2S11
20B2S11	37	XMLB300D2C11
20B2S12	37	XMLB300D2S11
20C2S11	37	XMLB300D2S12
35A2C11	41	XMLB300N2S12
35A2S11	41	XMLB500D2C11
35A2S12	41	XMLB500D2S11
35B2C11	41	XMLB500D2S12 XMLB500N2C11
35B2S11	41	XMLB500N2C11 XMLB500N2S11
35C2C11	41	XMLB500N2S12
70D2C11	45	XMLBL35R2S11
70D2S11	45	XMLBL35R2S13
70D2S12	45	XMLBM02V2C11
70D2S13	45	XMLBM02V2S11
70E2S11	45	XMLBM02V2S12
70E2S13	45	XMLBM05A2S11
70N2S11	45	XMLBS02B2S11
70N2S12 60D2C11	45 47	XMLBS04B2S11
50D2C11 50D2S11	47	XMLBS04B2S12
50D2S11 50D2S12	47	XMLBS35R2S11
60D2S12	47	XMLBS35R2S12
60E2S11	47	XMLC002B2S11

1	47	XMLC002B2S12	29
1	47	XMLC004B2S11	32
1	51	XMLC004B2S12	32
1	51	XMLC010B2S11	35
2	51	XMLC010C2S11	35
3	51	XMLC020B2S11	39
1	51	XMLC020B2S12	39
3	54	XMLC035B2S12	43
1	54	XMLC160D2S11	49
1	19	XMLC160D2S12	49
1	26	XMLC300D2S11	53
1	28	XMLC300D2S12	53
2	28	XMLC300D2S13	53
1	28	XMLCS02B2S11	29
1	31	XMLCS02B2S12	29
1	31	XMLCS02B2S13	29
2	31	XMLCS04B2S11	32
3	31	XMLCS04B2S12	32
1	31	XMLCS10A2S11	35
1	34	XMLCS35R2S11	24
1	34	XMLCS35R2S12	24
2	34	XMLCS35R2S13	24
3	34	XMLD010B1S11	36
1	34	XMLD020C1S12	40
1	34	XMLD035B1S11	44
1	34	XMLD160D1S13	50
1	38	XMLD500D1S11	56
2	38	XMLDM02V1S11	21
3	38	XZCC43FCP40B	57
1	38	XZCR1523062K1	57
1	38		
2	38		
1	42		
1	42		
1	42		
1	46		

www.telemecaniquesensors.com

The information provided in this catalogue contains description of products sold by TMSS France, its subsidiaries and other affiliated companies ('Offer') with technical specifications and technical characteristics of the performance of the corresponding Offer.

The content of this document is subject to revision at any time without notice due to continued progress in methodology, design and manufacturing.

To the extent permitted by applicable law, no responsibility or liability is assumed by TMSS France, its subsidiaries and other affiliated companies for any type of damage arising out of or in connexion with (a) informational content of this catalogue not conforming with or exceeding the technical specifications, or (b) any error contained in this catalogue, or (c) any use, decision, act or omission made or taken on the basis of or in reliance on any information contained or referred to in this catalogue.

NEITHER TMSS FRANCE, ITS SUBSIDIARIES, NOR ITS OTHER AFFILIATES, AS THE CASE MAYBE, MAKE NO WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO WHETHER THIS CATALOGUE OR ANY INFORMATION CONTAINED THEREIN SUCH AS PRODUCTS WILL MEET REQUIREMENTS, EXPECTATIONS OR PURPOSE OF ANY PERSON MAKING USE THEREOF.

Telemecanique[™] Sensors is a trademark of Schneider Electric Industries SAS used under license by TMSS France. Any other brands or trademarks referred to in this catalogue are property of TMSS France or, as the case may be, of its subsidiaries or other affiliated companies. All other brands are trademarks of their respective owners. This catalogue and its content are protected under applicable copyright laws and provided for informative use only.

No part of this catalogue may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of TMSS France. Copyright, intellectual, and all other proprietary rights in the content of this catalogue (including but not limited to audio, video, text, and photographs) rests with TMSS France, its subsidiaries, and other affiliated companies or its licensors. All rights in such content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.

As standards, specifications and design change from time to time, please ask for confirmation of the information given in this publication.

©2024, TMSS France, All Rights Reserved.

TMSS France SAS

Share capital: 366 931 214 € Tour Eqho, 2 avenue Gambetta 92400 Courbevoie – France 908 125 255 RCS Nanterre

TMSS US LLC 1875 Founders Drive Kettering, Ohio 45420-4017 / United States of America customer-support-NA@tesensors.com