OsiSense XCC

Codificador multivueltas absoluto CANopen

Manual de explotación

Traducción del manual original

Este documento contiene información general y técnica relativa a los productos comercializados por TMSS France, sus filiales y otras empresas asociadas.

La información y las características contenidas en este documento no pretenden en ningún caso sustituir los análisis y ensayos que debe realizar el usuario o integrador de los productos. Es responsabilidad de cada usuario o integrador realizar los análisis de riesgos y ensayos necesarios de los productos para garantizar su adecuación a sus necesidades específicas y a las prestaciones esperadas. Ni TMSS France ni ninguna de sus filiales o empresas asociadas podrán ser consideradas responsables del uso indebido de la información contenida en este documento.

TelemecaniqueTM Sensors es una marca comercial de Schneider Electric Industries SAS utilizada bajo licencia por TMSS France. Todas las demás marcas comerciales mencionadas en este documento son propiedad de TMSS France, sus filiales u otras empresas afiliadas o, en su caso, de sus licenciantes.

Tabla de materias

	Información de seguridad	5
	Acerca de este libro	7
Capítulo 1	Introducción	9
	Introducción.	10
	Presentación general	12
Capítulo 2	Instalación	15
	Soporte de conexión	16
	Cableado del bus y de la alimentación	19
	Cableado del codificador	21
	Accesorios	22
	Precauciones de instalación	23
Capítulo 3	Características	25
•	Características del codificador	25
Capítulo 4	Configuración	27
4.1	Configuración	28
	Configuración de los codificadores/Archivo EDS	29
	Transmisión de datos CANopen	30
	Modo operativo	33
4.2	Herramientas de software	35
	Ajuste de la red (SyCon)	36
	Integración y utilización en Unity	45
Capítulo 5	Diccionario de objetos CANopen	51
5.1	Objetos de comunicación de 1000h a 1FFFh (DS 301)	52
	Objeto 1000h: Device Type	53
	Objeto 1001h: Error Register	54
	Objeto 1002h: Manufacturer Status Register	55
	Objeto 1003h: Pre-defined Error Field (PEF)	56
	Objeto 1005h: COB-ID SYNC message	58
	Objeto 1008h: Manufacturer Device Name	58
	Objeto 1009h: Manufacturer Hardware Device (MHV)	58
	Objeto 100Ah: Versión del software del fabricante (MSV)	59
	Objeto 100Ch: Guard Time	59
	Objeto 100Dh: Life Time Factor	59

	Objeto 1010h: Store parameters	60
	Objeto 1011h: Restore Default parameters	61
	Objeto 1014h: COB-ID Emergency (EMCY) message	62
	Objeto 1015h: Inhibit Time EMCY	62
	Objeto 1016h: Consumer heartbeat time	63
	Objeto 1017h: Producer heartbeat time	64
	Objeto 1018h: Identity Object	65
	Objeto 1200h: Server SDO Parameter	66
	Objeto 1800h: 1st Transmit PDO communication Parameter	67
	Objeto 1801h: 2nd Transmit PDO communication Parameter	70
	Objeto 1A00h: 1st Transmit PDO Mapping Parameter	72
	Objeto 1A01h: 2nd Transmit PDO Mapping Parameter	73
5.2	Objetos específicos del fabricante de 2000h a 5FFFh	74
	Objeto 5FFFh: SED Data Object	74
5.3	Objetos específicos del codificador de 6000h a 9FFFh (DS 406)	75
	Objeto 6000h: Operating parameters	76
	Objeto 6001h: Measuring Units per revolution.	78
	Objeto 6002h: Total measuring range in measuring units	80
	Objeto 6003h: Preset Value	82
	Objeto 6004h: Position Value	83
	Objeto 6200h: Cyclic Timer	84
	Objeto 6500h Operating Status	87
	Objeto 6501h: Singleturn Resolution (Rotary)	88
	Objeto 6502h: Number of Distinguishable Revolutions	88 89
	Objeto 6503h: Alarms	90
	Objeto 6505h: Warnings	90
	Objeto 6506h: Supported Warnings	92
	Objeto 6507h: Profile and Software Version	93
	Objeto 6508h: Operating Time.	93
	Objeto 6509h: Offset Value	94
	Objeto 650Ah: Module Identification	94
	Objeto 650Bh: Serial Number	95
Capítulo 6	Diagnóstico	97
oupitalo o	Indicación de estado suministrada por los LED en el nivel del soporte de	٠.
	conexión	97
Apéndices	Contain	101
•		_
Apéndice A	Preguntas más frecuentes	103
Oleanu!-	Preguntas más frecuentes	103
Glosario		105
Índice		111

Información de seguridad

Información importante

AVISO

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales o para ofrecer información que aclara o simplifica los distintos procedimientos.

La inclusión de este icono en una etiqueta de peligro o advertencia indica un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

▲ PELIGRO

PELIGRO indica una situación inminente de peligro que, si no se evita, **provocará** lesiones graves o incluso la muerte.

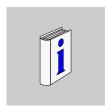
ADVERTENCIA

ADVERTENCIA indica una situación potencialmente peligrosa que, si no se evita, **puede provocar la** muerte o lesiones graves.

A AVISO

AVISO indica una situación potencialmente peligrosa que, si no se evita, **puede provocar** lesiones leves o moderadas.

AVISO


AVISO, utilizado sin el símbolo de alerta de seguridad, indica una situación potencialmente peligrosa que, si no se evita, **puede provocar** daños en el equipo.

TENGA EN CUENTA

La instalación, manejo, puesta en servicio y mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.

Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.

Acerca de este libro

Presentación

Objeto

En este manual se explica cómo instalar y configurar el codificador rotativo absoluto con interfaz CANopen conectada a un bus.

Documentos relacionados

Título de la documentación	Número de referencia
Instrucciones de servicio	W9 1690020

Puede descargar estas publicaciones técnicas y otra información técnica de nuestro sitio web www.schneider-electric.com.

Comentarios del usuario

Envíe sus comentarios a la dirección electrónica techcomm@schneider-electric.com.

Introducción

1

Descripción general

Este capítulo presenta las generalidades sobre el codificador del que trata esta documentación.

Referencias de los codificadores CANopen:

Descripción	Referencia
Codificador CANopen con eje macizo	XCC 3510PS84CBN
Codificador CANopen con eje hueco	XCC 3515CS84CBN

Contenido de este capítulo

Este capítulo contiene los siguiente apartados:

Apartado	Página
Introducción	10
Presentación general	12

Introducción

Principio

Este manual explica cómo instalar y configurar el codificador rotativo absoluto con interfaz CANopen. Los productos cumplen la norma DS406 y están certificados por el CiA.

Codificadores rotativos multivueltas absolutos

Los codificadores rotativos absolutos identifican todos los puntos de un movimiento a través de una señal digital única. Gracias a su facilidad para asignar un valor de posición exacto y único a todas las posiciones lineales y angulares, los codificadores rotativos absolutos se han convertido en uno de los enlaces más importantes entre el sistema mecánico y el sistema de control.

El principio de base de un codificador rotativo es el muestreo óptico de un disco de código transparente que está fijado al eje rotativo.

Resolución:

Tipo	Valor	N.° de bits
N.º máximo de pasos por vuelta	8192	13
N.º máximo de revoluciones detectables	4096	12
Resolución máxima (n.º de pasos)	33554432	25

La interfaz de bus CANopen de codificadores rotativos absolutos permite velocidades de hasta 1 MBaudio (longitud del cable: 30 m para una velocidad máxima de 1 Mbaudio, 5.000 m para una velocidad máxima de 10 kBaudios).

El soporte de conexión de los codificadores proporciona acceso a tres conmutadores rotativos para la configuración de la dirección y de la velocidad de transmisión. Además, integra dos LED que sirven de ayuda para el diagnóstico. El codificador garantiza la función de una T de conexión con dos conectores M12 para las señales de BUS IN y BUS OUT.

Información general de CANopen

El sistema CANopen se utiliza en las aplicaciones industriales. Se trata de un sistema de acceso múltiple (127 participantes como máximo), lo que implica que todos los dispositivos pueden acceder al bus (el sistema CANopen gestiona la anticolisión). De manera simplificada, cada nodo verifica que el bus esté libre; y de ser así, puede enviar mensajes. Si dos nodos intentan acceder al bus al mismo tiempo, el que disponga del grado de prioridad más importante (identificado como el más bajo) tendrá permiso para enviar su mensaje. Los nodos con el grado de prioridad más bajo deben detener la transferencia de sus datos y efectuar una emisión nueva después de un tiempo dado.

La comunicación de datos se realiza mediante mensajes. Estos mensajes están compuestos por un COB-ID (identificador de objeto), seguido por un máximo de 8 bytes de datos. El COB-ID está compuesto por un código de función y un número de nodo.

El número de nodo corresponde a la dirección de red del equipo. Es exclusivo en un bus. El código de función varía según el tipo de mensaje transmitido:

- Mensajes de gestión (LMT, NMT)
- Mensajería y servicio (SDO)
- Intercambio de datos (PDO)
- Mensajes predefinidos (sincronización, mensajes de emergencia)

El valor del COB-ID fija el nivel de prioridad del mensaje.

Los codificadores rotativos absolutos admiten los modos de comunicación siquientes:

- Modo cliente-servidor: Los datos sólo se emiten a petición del cliente (PLC).
- Modo cíclico: Los datos se emiten de forma cíclica (intervalo regular y ajustable) en el bus.
- Modo síncrono: Los datos se emiten tras la recepción de un mensaje de sincronización (SYNC).
- Modo de cambio de estado: Los datos sólo se emiten cuando se modifican.

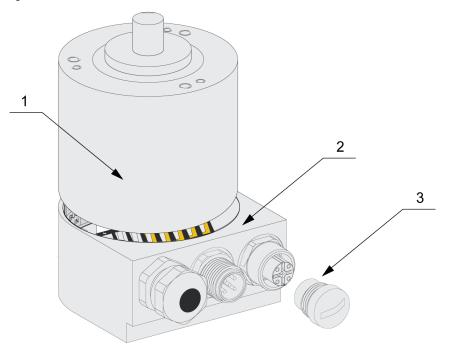
El codificador rotativo absoluto respeta el perfil de clase 2 para codificadores (DS 406, donde se definen las características de los codificadores rotativos con interfaz CANopen). Este perfil integra numerosos parámetros (sentido de rotación, resolución, etc.) además de los datos útiles de funcionamiento y diagnóstico para transferir. El codificador dispone además de funciones específicas del fabricante. Hay diversas herramientas de software de distintos proveedores disponibles para la configuración y el ajuste. Se puede programar fácilmente los codificadores utilizando el archivo de configuración EDS (hoja de datos electrónica) que se puede descargar del sitio www.schneider-electric.com.

NOTA: Para obtener más información sobre la tecnología CANopen (funcionalidad, fabricante, productos), las normas y los perfiles del codificador, puede solicitarla a CiA:

CAN In Automation (CiA)

International Users and Manufacturers Group e.V.

Am Weichselgarten 26

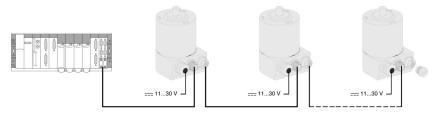

D-91058 Erlangen, Alemania

www.can-cia.org

Presentación general

Descripción

El codificador rotativo absoluto con interfaz CANopen se presenta de la forma siguiente:


Elementos del codificador:

N.°	Descripción
1	Cuerpo del codificador
2	Soporte de conexión
3	Tapón de estanqueidad

El cuerpo del codificador se conecta al soporte mediante un conector SUB-D 15.

Puesta en red

La interfaz del codificador rotativo absoluto se basa en el estándar CANopen. El maestro CANopen es por lo general un API, con los codificadores conectados a él mediante una conexión M12. La alimentación de los codificadores se realiza directamente mediante el PG9 de cada soporte:

Arquitectura de bus

bit a bit:

El número máximo de estaciones del bus es de 127 con direcciones de 1 a 89. Las velocidades disponibles son: 10, 20, 50, 125, 250, 500, 800 y 1.000 kBaudios. La longitud del cable está limitada por la velocidad de transmisión debido al arbitraje

Velocidad (kBaudios)	1000	800	500	250
Longitud máx. (m)	12	30	100	250
Longitud máx. (ft)	39.37	98.43	328.08	820.21

Los valores de la tabla son valores teóricos ofrecidos a título indicativo y variables según el entorno y el número de esclavos en el bus.

A ATENCIÓN

FUNCIONAMIENTO INESPERADO DEL EQUIPO

- Si se desmonta, la garantía quedará invalidada.
- Manipular con cuidado.
- En ambientes con perturbaciones, se aconseja conectar el soporte del codificador a tierra mediante uno de los tornillos de fijación.

El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.

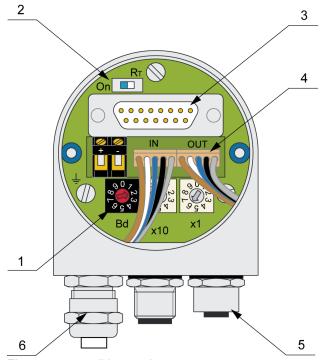
Instalación

2

Descripción general

El codificador absoluto está conectado a un soporte de conexión por medio de un conector SUB-D de 15 pines. El soporte se puede retirar del codificador desenroscando dos tornillos situados junto al soporte. El bus y la alimentación están encaminados respectivamente en el soporte mediante los conectores M12 y un prensaestopas PG9 y están conectados a los borneros.

Contenido de este capítulo


Este capítulo contiene los siguiente apartados:

Apartado	
Soporte de conexión	16
Cableado del bus y de la alimentación	19
Cableado del codificador	
Accesorios	22
Precauciones de instalación	

Soporte de conexión

Descripción

Afloje el soporte del codificador para acceder a los ajustes del codificador:

Elementos accesibles en el soporte:

N.°	Descripción	Aplicación
1	Conmutadores rotativos	Velocidad de transmisión y número del nodo
2	Interruptor	Validación de la terminación de línea
3	SUB-D 15 hembra	Conexión soporte/codificador
4	Bornero	BUS IN, BUS OUT y alimentación
5	2 conectores M12 codificación A	Conexión cable/soporte (BUS IN, BUS OUT)
6	Prensaestopas PG9	Conexión cable/soporte (para cable de alimentación de 24 V CC, ∅ 4-8 mm)

A PELIGRO

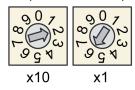
RIESGO DE ELECTROCUCIÓN

- Corte la alimentación antes de trabajar en este equipo.
- Asegúrese de que la máquina giratoria está bloqueada antes de realizar cualquier intervención en este equipo.
- Cierre correctamente la tapa después de la configuración o el cableado del microinterruptor.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Velocidad de transmisión

El ajuste de la velocidad en baudios se efectúa utilizando el conmutador rotativo situado en el soporte.

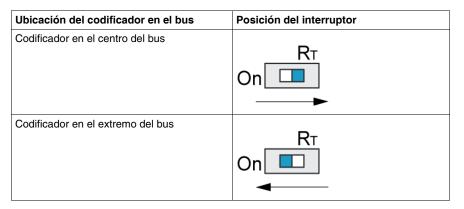


Las velocidades en baudios posibles son las siguientes:

Velocidad (kBaudios)	Posición del conmutador rotativo del codificador
10	0
20	1
50	2
125	3
250	4
500	5
800	6
1000	7
Reservado	8
Predeterminada (250)	9

Dirección del nodo

Los conmutadores rotativos situados en el soporte permiten ajustar la dirección de red (número del nodo) del codificador:


El conmutador x1 permite ajustar las unidades y el conmutador x10 permite ajustar las decenas. Las direcciones posibles están comprendidas entre 1 y 89, y una misma dirección sólo se puede utilizar una vez en la red.

NOTA: La dirección 0 está reservada (NMT).

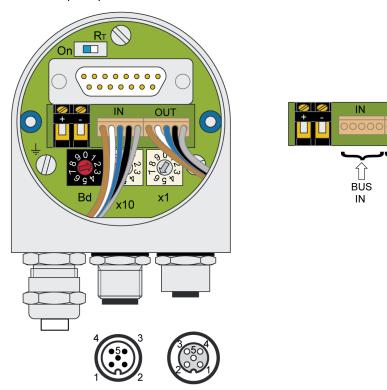
NOTA: Las direcciones 90-99 están reservadas y no se deben utilizar.

Terminación de línea

Si el codificador está conectado a uno de los extremos de la línea del bus, se debe validar la terminación de línea (poner el interruptor en la posición "ON").

NOTA: Si la terminación está en "ON", el bornero "BUS OUT" *Cableado del bus y de la alimentación, página 19* está desconectado.

El soporte debe estar conectado al codificador para que el bus esté cableado correctamente. Si es necesario cambiar el codificador en funcionamiento, se tendrá que utilizar una terminación de línea separada.


OUT

BUS OUT

Cableado del bus y de la alimentación

Descripción

Retire el soporte para acceder al cableado del codificador:

Descripción del bornero:

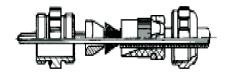
Bornero	Pin	Descripción
-	-	Tensión de alimentación de 0 V
+	+	Tensión de alimentación de 24 V
BUS IN	1	CAN_SHLD
	2	(CAN_V+)
	3	CAN_GND
	4	CAN_H
	5	CAN_L

Bornero	Pin	Descripción
BUS OUT	1	CAN_SHLD
	2	(CAN_V+)
	3	CAN_GND
	4	CAN_H
	5	CAN_L

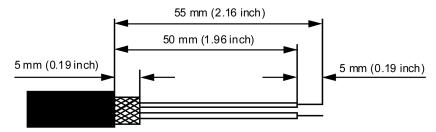
A PELIGRO

RIESGO DE ELECTROCUCIÓN

- Corte la alimentación antes de trabajar en este equipo.
- Asegúrese de que la máquina giratoria está bloqueada antes de realizar cualquier intervención en este equipo.
- Cierre correctamente la tapa después de la configuración o el cableado del microinterruptor.


El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Cableado del codificador


Conexión de la alimentación al soporte de conexión

Para alimentar el codificador mediante el PG9, es necesario seguir el procedimiento siguiente para conectar el soporte:

Paso	Acción
1	Retire el tornillo, el anillo de estanqueidad y el cono del prensaestopas.
2	Prepare el cable como se muestra en el siguiente esquema.
3	Coloque tornillo y el anillo de estanqueidad en el cable.
4	Instale el cono bajo el blindaje.
5	Ponga el conjunto del cable en el prensaestopas y apriete el tornillo.

Esquema de cableado:

Conexión del soporte al bus

Para conectar el codificador al bus, basta con conectar el cable de red al conector M12 hembra (véase *Soporte de conexión, página 16*).

NOTA: Para evitar perturbaciones electromagnéticas, se recomienda utilizar cables blindados para la transmisión de los datos. El blindaje se tiene que conectar a tierra en los dos extremos del cable.

NOTA: El codificador debe estar conectado al bus antes de alimentarlo.

Accesorios

Lista de accesorios

La lista de los accesorios disponibles es la siguiente:

Descripción		Tipo
Anillo de reducción*	De 15 a 14 mm	XCC R358RDL14
Anillo de reducción*	De 15 a 12 mm	XCC R358RDL12
Anillo de reducción*	De 15 a 10 mm	XCC R358RDL10
Anillo de reducción*	De 15 a 8 mm	XCC R358RDL08
Anillo de reducción*	De 15 a 6 mm	XCC R358RDL06

^{*} Solamente para ejes huecos

Instrucciones de montaje

Codificador con árbol saliente:

Conectar el eje del codificador al eje giratorio con la ayuda de un acoplamiento XCC RA.

Codificador con eje hueco:

Poner el codificador y fijarlo al eje giratorio con la ayuda de la abrazadera, con o sin el anillo de reducción. A continuación, fijar el kit flexible a un soporte fijo.

No apretar el anillo de fijación si el eje director y el anillo de reducción no están presentes en el codificador.

Precauciones de instalación

Precauciones

Se tienen que respetar los siguientes puntos:

- Procure que el codificador no se caiga ni esté expuesto a vibraciones excesivas.
 El codificador es un dispositivo de precisión.
- No abra la caja del codificador (esto no significa que el soporte de conexión no se pueda retirar).
- El árbol del codificador tiene que estar conectado al árbol que va a medirse con un acoplamiento apropiado. Este acoplamiento se utiliza para amortiguar las vibraciones y compensar el desequilibrio al nivel del árbol del codificador, así como para impedir cualquier fuerza importante no autorizada. Schneider-Electric proporciona acoplamientos apropiados.
- Los codificadores absolutos Schneider-Electric son robustos pero en cambio, cuando se utilizan en condiciones ambientales adversas, tienen que protegerse adecuadamente. El codificador no se debe utilizar como manilla ni como estribo.
- Estos codificadores sólo pueden ponerse en servicio y hacerse funcionar por personal cualificado. Este personal está autorizado a poner en servicio, conectar a tierra y reparar los dispositivos, sistemas y circuitos respetando las normas de seguridad vigentes.
- Está prohibido modificar el codificador desde el punto de vista eléctrico.
- Haga llegar el cable de conexión del bus hacia el codificador respetando una distancia suficiente o de forma completamente independiente de los cables de alimentación y las perturbaciones electromagnéticas asociadas. Utilice cables totalmente blindados para obtener una transferencia fiable de datos y garantizar una puesta a tierra correcta.
- En ambientes con perturbaciones, se aconseja conectar el codificador a tierra.

A PELIGRO

RIESGO DE ELECTROCUCIÓN

- Corte la alimentación antes de trabajar en este equipo.
- Asegúrese de que la máquina giratoria está bloqueada antes de realizar cualquier intervención en este equipo.
- Cierre correctamente la tapa después de la configuración o el cableado del microinterruptor.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

A ADVERTENCIA

FUNCIONAMIENTO INESPERADO DEL EQUIPO

- Compruebe las conexiones eléctricas para evitar cortocircuitos y picos de tensión.
- Compruebe las conexiones antes del uso y durante las operaciones de mantenimiento.
- Respete las precauciones de uso.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

ATENCIÓN

PÉRDIDA DE ESTANQUEIDAD

Cierre correctamente la tapa después de la configuración o el cableado del microinterruptor.

El incumplimiento de estas instrucciones puede causar daño al equipo.

Características

3

Características del codificador

Características mecánicas

Las características mecánicas son las siguientes:

Tipo de eje		Ø 10 h8 (0.39 in h8) Ø 15 F7 (0.59 in F7)		
Velocidad de rotac	ión máxima	6.000 revoluciones/minuto (rpm)		
Momento de inerci	а	30 g.cm ²		
Par		0,3 N.cm		
Carga máxima Radial		11 daN		

Características eléctricas

Las características eléctricas son las siguientes:

Tensión de alimentación	11-30 V. Rizado máx.: 500 mV			
Corriente consumida sin carga	100 mA			
Frecuencia	800 kHz			

Características ambientales

Las características ambientales son las siguientes:

Conformidad		CE			
Temperatura del	Funcionamiento	-40 - +85 °C (−40 - +185 °F)			
aire ambiente	Almacenamiento	-40 - +85 °C <i>(</i> −40 - +185 °F)			
Grado de protecció	n	IP64			
Resistencia a las vi	braciones	10 gn (f=10-2000 Hz), según IEC 60068-2-6			
Resistencia a los choques		100 gn (6 ms, 1/2 seno) según IEC 60068-2-27			

Resistencia a las perturbaciones	Descargas electrostáticas	Según IEC 61000-4-2: nivel 2, 4 kV aire; 2 kV contacto		
electromagnéticas	Campos electromagnéticos radiados (ondas electromagnéticas)	Según IEC 61000-4-3: nivel 3, 10 V/m		
	Transitorios rápidos (interferencias de marcha/paro)	Según IEC 61000-4-4: nivel 3, 2 kV (1 kV para las entradas/salidas)		
	Tensión de onda de choque	Según IEC 61000-4-5: nivel 1: 500 V		
Materiales	Soporte	Aluminio		
	Тара	Aluminio		
	Eje	Acero inoxidable		
	Rodamientos	Bolas de acero 6000ZZ1 (eje macizo) - 6803ZZ (eje hueco)		

Configuración

4

Descripción general

Este capítulo presenta los parámetros de configuración del codificador absoluto con interfaz CANopen.

Contenido de este capítulo

Este capítulo contiene las siguientes secciones:

Sección	Apartado	Página
4.1	Configuración	28
4.2	Herramientas de software	35

4.1 Configuración

Presentación

En esta sección se describe cómo configurar un codificador absoluto CANopen.

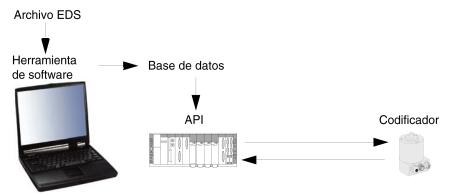
Contenido de esta sección

Esta sección contiene los siguientes apartados:

Apartado	Página
Configuración de los codificadores/Archivo EDS	29
Transmisión de datos CANopen	30
Modo operativo	33

Configuración de los codificadores/Archivo EDS

Generalidades


El codificador absoluto con interfaz CANopen se puede configurar según las necesidades del usuario. El archivo EDS correspondiente al codificador debe estar cargado en el archivo utilizado para la configuración de la red CANopen. El usuario tiene acceso a los parámetros y funciones del codificador.

Principio de configuración

Descargue el archivo EDS y sus 3 archivos de imagen asociados del sitio www.Schneider-Electric.com:

- TEXCC35CBN 0101E.EDS
- TEXCC35CBN 0101E R.dib
- TEXCC35CBN_0101E_S.dib
- TEXCC35CBN_0101E_D.dib

La configuración del sistema se realiza de acuerdo con el siguiente esquema:

Ajustes de los parámetros

Transmisión de datos CANopen

Transmisión de datos

La transmisión de datos en la red CANopen se realiza en forma de mensajes. Estos mensajes se componen de un COB-ID y de 8 bytes de datos, como se indica en la tabla siguiente:

COB-ID	Control	Índice		Subíndice	Subíndice Datos de servicio/Datos de prod			
11 bits	Byte 0	Byte 1 Byte 2		Byte 3	Byte 4 Byte 5 Byte 6 Byte			Byte 7
		Menos significativo	Más significativo		Menos significativo	->	->	Más significativo

COB-ID

El identificador COB de 11 bits está formado del siguiente modo:

10	9	8	7	6	5	4	3	2	1	0	
Códi	Código de función Número del nodo										
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X: Libre, para elegir

El identificador COB determina únicamente el objeto de mensaje. Está compuesto por un código de función, que permite identificar la clase del mensaje, y el número del nodo que es la dirección del codificador absoluto. El número del nodo se fija con los dos conmutadores rotativos situados en el soporte (*Dirección del nodo, página 18*).

Están disponibles los códigos de función siguientes (rx y tx como los visualiza el maestro):

Objeto	FC (binario)	Resultado de COB- ID	Hexadecimal	Clase de prioridad*
NMT	0000	0		0
SYNC	0001	128	80	0
Emergencia	0010	129 - 255	81 - FF	0, 1
PDO (tx)	0011	385 - 511	181 - 1FF	1, 2
PDO (rx)	0100	513 - 639	201 - 27F	2
PDO (tx)	0101	641 - 767	281 - 2FF	2, 3
PDO (rx)	0110	769 - 895	301 - 37F	3, 4
SDO (tx)	1011	1409 - 1535	581 - 5FF	6
SDO (rx)	1100	1537 - 1663	601 - 67F	6, 7

^{*} Prioridad: 0 = prioridad máxima, 7 = prioridad mínima

FC = Código de función

Byte de control

El byte de control incluye el tipo de mensaje enviado en la red CAN. Un byte puede tener tres tipos de mensajes:

- Ajuste de los parámetros: Sirven para enviar datos ajustados al codificador (nodo) para su configuración.
- Petición: El maestro las utiliza para releer los parámetros registrados en un nodo.
- Advertencia: El codificador rotativo las envía al maestro si un mensaje enviado no se puede gestionar debidamente.

La descripción de los controles es la siguiente:

Control	Función	Mensaje	Descripción
22 h	Maestro -> Codificador	Petición	Parámetro hacia el codificador
60 h	Codificador -> Maestro	Confirmación	Parámetro recibido
40 h	Maestro -> Codificador	Petición	Petición de parámetro
43 h, 4B h, 4F h (*)	Codificador -> Maestro	Respuesta	Parámetro hacia el maestro
80 h	Advertencia	Respuesta	Error de transmisión

(*) El valor de este byte de control depende de la longitud de los datos del parámetro solicitado:

Control	Longitud de los datos	Longitud de los datos
43 h	4 bytes	Sin signo 32
4B h	2 bytes	Sin signo 16
4F h	1 byte	Sin signo 8

Índice/Subíndice

La transmisión de los datos se realiza exclusivamente mediante objetos referenciados por medio de un índice. Los objetos son de tipo simple o compuesto. En este último caso, el índice asociado al objeto incluirá varios subíndices. El número de subíndices se indica en el subíndice 0, y puede ser 1 a 254. Cada objeto se describe en una estructura llamada diccionario de objetos.

La organización de un diccionario de objetos estándar se indica en la tabla siguiente:

Índice (hex)	Objeto
0000	No utilizado
0001-001F	Tipos de datos estáticos
0020-003F	Tipos de datos complejos
0040-005F	Tipos de datos específicos del fabricante
0060-0FFF	Reservado
1000-1FFF	Zona de comunicación (véase <i>Objetos de comunicación de 1000h a 1FFFh (DS 301), página 52</i>)
2000-5FFF	Zona específica del fabricante (véase <i>Objetos específicos del fabricante de 2000h a 5FFFh, página 74</i>)
6000-9FFF	Zona específica del perfil de equipo (véase <i>Objetos específicos del codificador de 6000h a 9FFFh (DS 406), página 75</i>)
A000-FFFF	Reservado

Modo operativo

Principio

El codificador rotativo absoluto accede a la red CAN cuatro segundos después de la puesta en tensión en modo preoperativo:

FC	NN	Control	Datos S/P	Descripción
1110 b	XXXXXXX	-	-	Mensaje de ruptura

Se recomienda introducir los parámetros cuando el codificador esté en modo preoperativo. El modo preoperativo implica una actividad reducida en la red, lo que simplifica la verificación de la exactitud de los SDO enviados/recibidos. En modo preoperativo no se puede enviar ni recibir PDO.

Reinicialización del codificador rotativo absoluto

Si un nodo no funciona correctamente, se recomienda ejecutar una reinicialización.

FC	NN	Control	Datos S/P	Descripción
0000 b	NODE-ID d	81 h	-	Reinicialización de NMT, NODE-ID
0000 b	0 d	82 h	-	Reinicialización de NMT, todos los nodos

NODE-ID: N.º del nodo

Después de la reinicialización, el codificador rotativo absoluto accede al bus en modo preoperativo.

Modo: Preoperativo

Para poner un nodo en modo preoperativo, el maestro debe transmitir el mensaje siguiente:

FC	NN	Control	Datos S/P	Descripción
0000 b	NODE-ID d	80 h	-	Preoperativo de NMT, NODE-ID

NODE-ID: N.º del nodo

Modo: START

Para que uno de los nodos (o todos) pasen a modo operativo, el maestro envía el siguiente mensaje:

FC	NN	Control	Datos S/P	Descripción
0000 b	0 d	01 h	-	Arranque de NMT, todos los nodos
0000 b	NODE-ID d	01 h	-	Arranque de NMT, NODE-ID

NODE-ID: N.º del nodo

Se pueden poner en modo operativo todos los nodos (NN=0) o uno solo (NN=NODE-ID).

Modo: STOP

Para que uno de los nodos (o todos) salgan del modo operativo, el maestro envía el siguiente mensaje:

FC	NN	Control	Datos S/P	Descripción
0000 b	0 d	02 h	-	Parada de NMT, todos los nodos
0000 b	NODE-ID d	02 h	-	Parada de NMT, NODE-ID

NODE-ID: N.º del nodo

Transmisión de la posición actual

El valor del proceso se envía a la red CAN con el mensaje siguiente:

COB-ID	Valor del pi	Valor del proceso				
11 bits	Byte 0	Byte 0 Byte 1 Byte 2 Byte 3				
	2 ⁷ a 2 ⁰	2 ¹⁵ a 2 ⁸	2 ²³ a 2 ¹⁶	2 ³¹ a 2 ²⁴		

El COB-ID contiene el número del nodo y el PDO(tx) correspondiente. De forma predeterminada, el valor del proceso enviado utiliza el código de función PDO(tx)0011 y, en respuesta al mensaje SYNC, utiliza el código de función PDO(tx)0101.

4.2 Herramientas de software

Presentación

Los codificadores objeto de este documento son productos certificados CANopen con el perfil DS 406 V3.2. Son compatibles con los otros productos certificados CANopen.

La configuración de los codificadores descritos en este capítulo se efectúa mediante el software siguiente:

Ajuste de la red	Herramienta de configuración SyCon versión ≥ 2.9
Programación API	Unity Pro versión ≥ 4.0

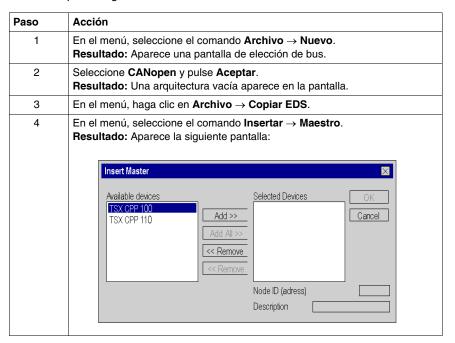
Remítase a la documentación de cada software para la configuración mínima del PC utilizado.

Contenido de esta sección

Esta sección contiene los siguientes apartados:

Apartado	
Ajuste de la red (SyCon)	36
Integración y utilización en Unity	45

Ajuste de la red (SyCon)

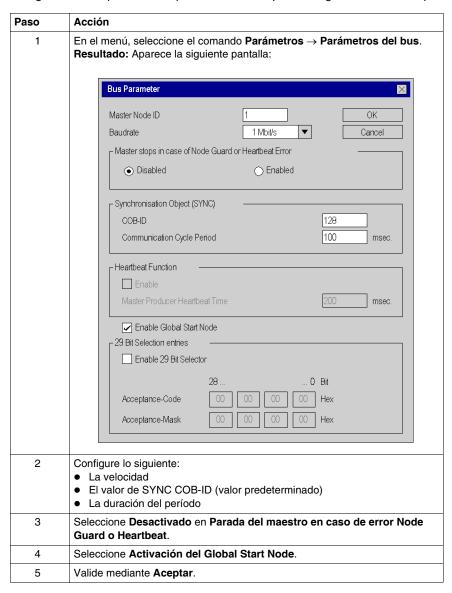

Descripción de SyCon

La herramienta de configuración (SyCon) permite esquematizar una red mediante una representación gráfica de los nodos de la red. Luego, SyCon permite generar la configuración completa de la red esquematizada.

Permite acceder a los distintos parámetros de configuración, así como a los parámetros de comunicación.

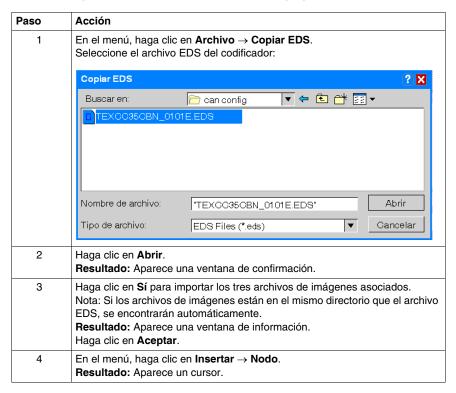
Declaración del maestro

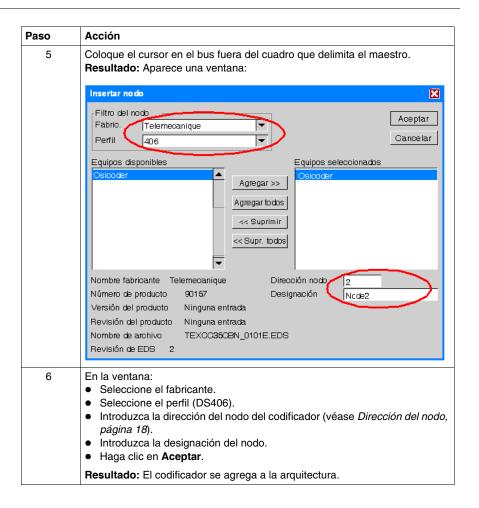
En el software de programación UNITY, inicie la herramienta de red SyCon y lleve a cabo los pasos siguientes:



Paso	Acción						
5	Seleccione TSX CPP 100.						
	Haga clic en Agregar.						
	Introduzca un nombre que represente el equipo maestro en el campo						
	Descripción .						
	Nota: El nombre no debe contener espacios ni caracteres acentuados y se						
	compondrá de un máximo de 32 caracteres.						
	Valide mediante Aceptar.						
	Resultado: Aparece la siguiente arquitectura:						
	CANOPEN_Master						
	Node ID 1						
	Master TSX CPP 100						

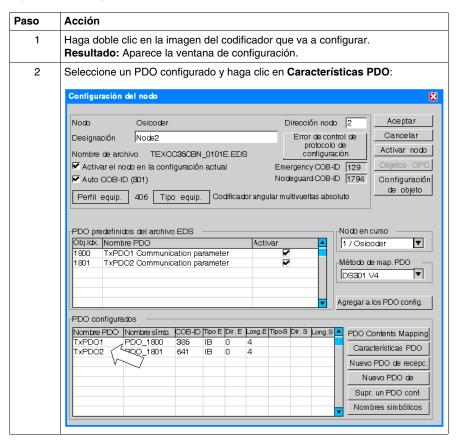
\$182690200 04/2011 37

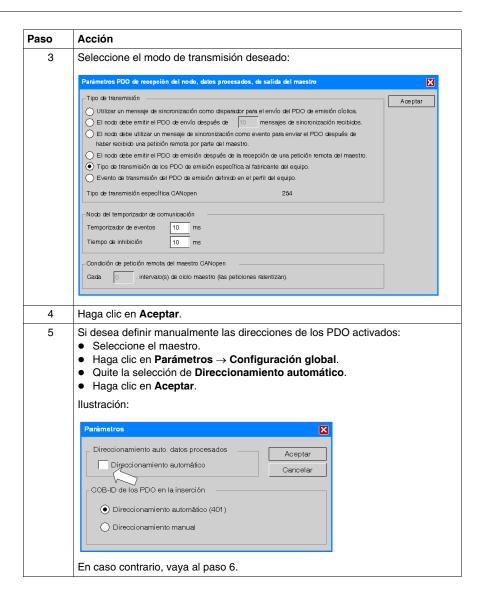

Configuración del bus CANopen

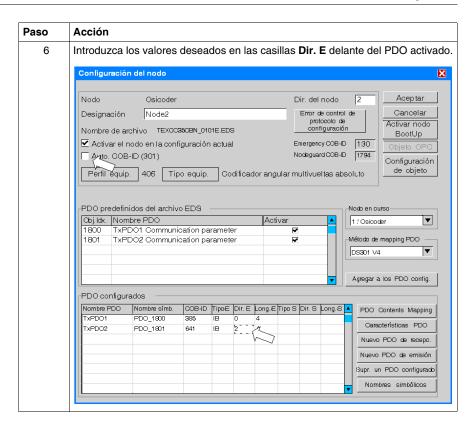

La siguiente tabla presenta los pasos necesarios para configurar el bus CANopen:

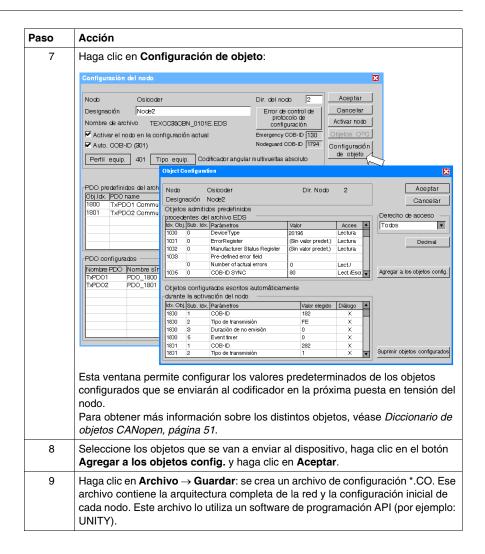
Adición de un codificador

En la tabla siguiente se presentan los pasos para agregar un codificador:

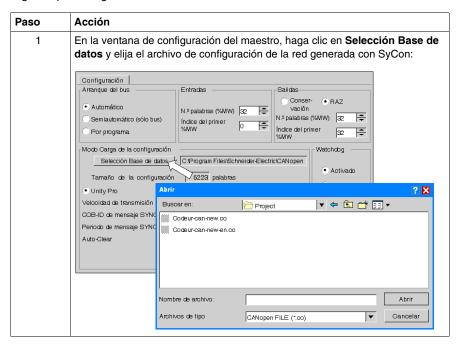


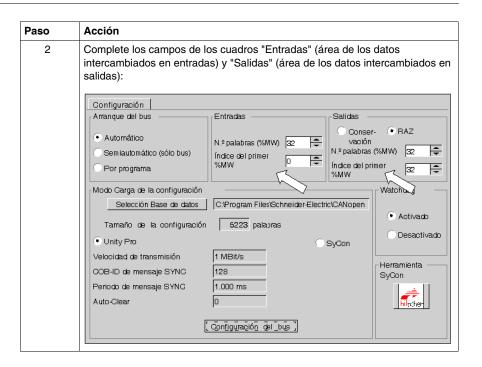



40 \$182690200 04/2011


Ajuste de los PDO

Siga los pasos siguientes:

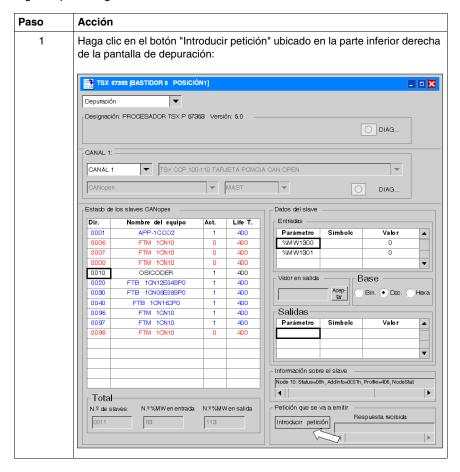


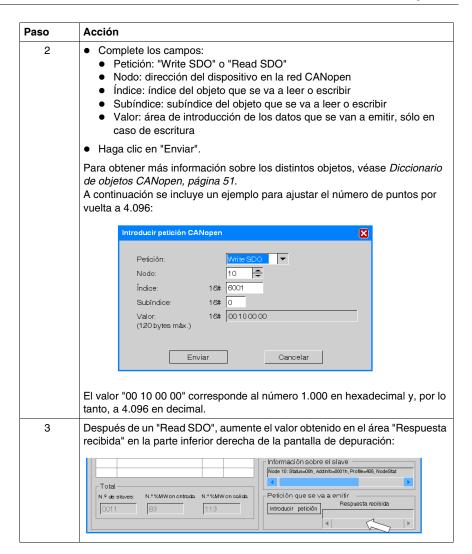


Integración y utilización en Unity

Configuración

Siga los pasos siguientes:




46 \$182690200 04/2011

Petición SDO mediante la pantalla de depuración

Siga los pasos siguientes:

Introducción

En este capítulo se describe cada objeto del diccionario del módulo de interfaz de red CANopen.

Contenido de este capítulo

Este capítulo contiene las siguientes secciones:

Sección	Apartado	Página
5.1	Objetos de comunicación de 1000h a 1FFFh (DS 301)	52
5.2	Objetos específicos del fabricante de 2000h a 5FFFh	74
5.3	Objetos específicos del codificador de 6000h a 9FFFh (DS 406)	75

5.1 Objetos de comunicación de 1000h a 1FFFh (DS 301)

Introducción

En esta sección se muestra una lista de los objetos vinculados a la comunicación. Cada objeto se describe según la norma CANopen con todas sus características técnicas.

Contenido de esta sección

Esta sección contiene los siguientes apartados:

Objeto	Descripción	Tipo de datos	Atributo	Página
1000h	Device Type	Unsigned 32	RO	53
1001h	Error Register	Unsigned 8	RO	54
1002h	Manufacturer Status Register	Unsigned 32	RO	55
1003h	Pre-defined Error Field	Unsigned 32	RO	56
1005h	COD-ID SYNC	Unsigned 32	ROMAP	58
1008h	Manufacturer Device Name	Visible string	Constante	58
1009h	Manufacturer hardware Version	Visible string	Constante	58
100Ah	Manufacturer Software Version	Visible string	Constante	59
100Ch	Guard Time	Unsigned 16	RW	59
100Dh	Life Time Factor	Unsigned 8	RW	59
1010h	Store Parameters	Unsigned 32	RW	60
1011h	Restore Default Parameters	Unsigned 32	RW	61
1014h	COB-ID EMCY	Unsigned 32	RW	62
1015h	Inhibit Time EMCY	Unsigned 16	RW	62
1016h	Consumer heartbeat Time	Unsigned 32	RW	63
1017h	Producer heartbeat Time	Unsigned 16	RW	64
1018h	Identity Project		RO	65
1200h 1st Server SDO Parameter			RO	66
1800h	1st Transmit PDO Parameter		RW	67
1801h	2nd Transmit PDO Parameter		RW	70
1A00h	1st transmit PDO Mapping		RW	72
1A01h	2nd Transmit PDO Mapping		RW	73

52 \$182690200 04/2011

Objeto 1000h: Device Type

Descripción

Este objeto indica el tipo de equipo y sus funciones. Está compuesto por un campo de 16 bits que indica el perfil utilizado (406 para DS406: perfil de codificador) y un segundo campo de 16 bits que ofrece información sobre el tipo de codificador.

Representación del objeto:

31 16	15 (О	
Tipo de codificador	Perfil utilizado		
Palabra más significativa	Palabra menos significativa		

Tipo de codificador:

Valor	Descripción			
0001 _h	Codificador rotativo absoluto de una vuelta			
0002 _h	Codificador rotativo absoluto multivueltas			
0003 _h	Codificador rotativo absoluto de una vuelta con cuentavueltas electrónico			
0004 _h	Codificador rotativo incremental			
0005 _h	Codificador rotativo incremental con contaje electrónico			
0006 _h	Codificador lineal incremental			
0007 _h	Codificador lineal incremental con contaje electrónico			
0008 _h	Codificador lineal absoluto			
0009 _h	Codificador lineal absoluto con codificación cíclica			
000A _h	Interfaz de codificador multicaptador			
000B _h FFFF _h	Reservado			

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED32	20196 h	ro	no	no

Objeto 1001h: Error Register

Descripción

Este objeto puede almacenar los fallos internos. Es obligatorio para todos los equipos, y se utiliza con el objeto EMCY que indica los errores.

Puede que se visualice el fallo siguiente:

Bit	Significado
0	Generic error

Estos bits representan el valor "O" booleano de los fallos presentes en el nodo.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED8	-	ro	no	no

Objeto 1002h: Manufacturer Status Register

Descripción

Se guardan datos de diagnóstico en esta palabra doble. Este objeto se utiliza con el mensaje EMCY.

Representación del objeto:

31	16	15	0	
Información complementaria		Código de error		
Palabra más significativa		Palabra menos significativa		

Asignación de los bits

Registros	Descripción
Bits 0 - 15	Bits [0-8]: no utilizados Bit [9]: fallo de comunicación o fallo externo Bits [10-15]: no utilizados
Bits 16 - 31	Bits [16- 31]: no utilizados

NOTA:

Valor de los bits:

• 0 : sin fallo

• 1 : presencia de un fallo

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED32	-	ro	no	no

Objeto 1003h: Pre-defined Error Field (PEF)

Descripción

Este objeto es una palabra doble que permite memorizar los fallos del equipo indicados por el objeto EMCY. Este objeto permite conservar un histórico de los errores.

- El subíndice 0 contiene el número de errores almacenados. El valor 0 significa que no hay error almacenado (después de la reinicialización del objeto PEF por ejemplo).
- La palabra menos significativa contiene el código de error.
- La palabra más significativa almacena información complementaria específica del error indicado en el codificador.

Representación del objeto:

31 16	15 0		
Información complementaria	Código de error		
Palabra más significativa	Palabra menos significativa		

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice = Número de errores almacenados	UNSIGNED8	0	rw	no	no
1 h	Último error detectado	UNSIGNED32	-	ro	no	no
2 h	Penúltimo error detectado	UNSIGNED32	-	ro	no	no
FE h						

Aparición de un nuevo fallo

Durante la aparición de un nuevo fallo, los códigos presentes se desplazan a los subíndices de rango superior: el fallo presente en el subíndice 1 pasa al subíndice 2, el fallo del subíndice 2 pasa al subíndice 3, etc.

56 \$182690200 04/2011

RAZ

El histórico de los códigos de fallo sólo puede eliminarse mediante la escritura del valor 0 en el subíndice 0 del objeto 1003h.

NOTA: Eliminar el motivo de un fallo no suprime el código de error del PEF.

Lista de códigos de error

Código de error	Diagnóstico	Causa
0000 h	ERROR_RESET_OR_NO_ERROR	Se ha rectificado un error
1000 h	GENERIC_ERROR	Error de comunicación interno
6101 h	SOFTWARE_RX_QUEUE_OVERRUN	Desbordamiento de la memoria de recepción
6102 h	SOFTWARE_TX_QUEUE_OVERRUN	Desbordamiento de la memoria de emisión
8100 h	COMMUNICATION	Error de sincronización del contador de emisión y recepción (el mensaje EMCY se transmite si el valor del contador > 96)
8120 h	CAN_IN_ERROR_PASSIVE_MODE	Interrupción del controlador CAN
8130 h	LIFE_GUARD_ERROR	Error de Node Guarding
8140 h	BUS_OFF	Desbordamiento del búfer del contador de transmisión

Objeto 1005h: COB-ID SYNC message

Descripción

Este objeto contiene el identificador del mensaje de sincronización.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED32	80 h	ROMAP	no	sí

Objeto 1008h: Manufacturer Device Name

Descripción

Este objeto contiene el nombre del dispositivo.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	STRING	Osicoder	ro	no	no

Objeto 1009h: Manufacturer Hardware Device (MHV)

Descripción

Este objeto contiene la versión del hardware del dispositivo, en formato HVxx.yy.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	STRING	-	ro	no	no

Objeto 100Ah: Versión del software del fabricante (MSV)

Descripción

Este objeto contiene la versión del software del dispositivo con el formato "SWxx.yy".

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	STRING	-	ro	no	no

Objeto 100Ch: Guard Time

Descripción

El objeto 100Ch contiene el parámetro "Guard-Time" expresado en milisegundos, que es el tiempo entre dos consultas del nodo realizadas por el maestro (presencia del nodo).

"Guard-Time" es nulo si no se utiliza el protocolo.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED16	0	rw	no	sí

Objeto 100Dh: Life Time Factor

Descripción

El objeto 100Dh contiene el parámetro "Life-Time-Factor", que multiplicado por el valor del objeto 100Ch "Guard-Time" es el tiempo acordado por el maestro antes de detener el nodo cuando no responde al maestro.

"Life-Time-Factor" es nulo si no se utiliza el protocolo.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED8	0	rw	no	sí

Objeto 1010h: Store parameters

Descripción

Este objeto admite el almacenamiento de los parámetros en memoria no volátil. Para guardar los parámetros, primero se debe escribir en el subíndice la cadena de caracteres "save" (6576 6173h) que evita un almacenamiento por error.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	1	ro	no	no
1 h	Almacenar todos los parámetros	UNSIGNED32	-	rw	no	no

Funcionamiento

Para guardar los parámetros, es necesario escribir en el índice correspondiente la cadena de caracteres "save" (6576 6173h):

				enos a
Norma ISO 8859 (ASCII)	е	v	а	s
Valor hexadecimal	65 h	76 h	61 h	73 h

La lectura del subíndice 1 proporciona la información acerca de sus funciones de almacenamiento. El resultado obtenido, 0000 0001h, indica que el módulo efectúa el almacenamiento de los parámetros únicamente mediante un comando.

Objeto 1011h: Restore Default parameters

Descripción

Este objeto permite restaurar los parámetros predeterminados del equipo. Para restaurar los parámetros, primero se debe escribir en el subíndice apropiado la cadena de caracteres "load" (6461 6F6Ch) que evita una restauración por error.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	1	ro	no	no
1 h	Restaurar todos los parámetros predeterminados.	UNSIGNED32	-	rw	no	no

NOTA: Los parámetros de restauración sólo se tendrán en cuenta tras una puesta en tensión.

Funcionamiento

Para restaurar los parámetros, es necesario escribir en el índice correspondiente la cadena de caracteres "load" (6461 6F6Ch):

			Palabra menos significativa	
Norma ISO 8859 (ASCII)	d	а	0	
Valor hexadecimal	64 h	61 h	6F h	6C h

La lectura del subíndice 1 proporciona información acerca de la posibilidad del módulo de restaurar sus parámetros de fábrica. El resultado obtenido, 00000001h, indica que los parámetros de fábrica únicamente se pueden restaurar mediante un comando.

Objeto 1014h: COB-ID Emergency (EMCY) message

Descripción

Este objeto contiene el identificador del mensaje de emergencia EMCY.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED32	80 h + NODE-ID	rw	no	sí

Objeto 1015h: Inhibit Time EMCY

Descripción

Este objeto contiene el tiempo de inhibición del mensaje de emergencia EMCY. El valor debe ser múltiplo de 100 μs .

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED16	0	rw	no	sí

Objeto 1016h: Consumer heartbeat time

Descripción

Este objeto permite configurar el período deseado por el consumidor (el codificador) para recibir el mensaje Heartbeat del maestro del bus.

El valor de este objeto debe ser superior al valor del objeto 1017h.

El valor de tiempo debe ser múltiplo de 1 ms.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	1	ro	no	sí
1 h	Consumer UNSIGNED32 heartbeat time		0	rw	no	sí

Contenido de la variable

El contenido del subíndice 1 es el siguiente:

Bit	31 a 24 23 a 16		15 a 0
Valor	0 (Reservado)	Dirección del codificador	Tiempo de supervisión en ms

Si el valor del objeto es 0 h, no se supervisa ningún codificador.

Objeto 1017h: Producer heartbeat time

Descripción

Este objeto permite configurar el tiempo de ciclo del mensaje de emisión Hearbeat.

El valor de tiempo debe ser múltiplo de 1 ms.

Si el valor del objeto es 0, no se utiliza el objeto.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	UNSIGNED16	0	rw	no	sí

Si se elige el protocolo de supervisión de error Heartbeat, el productor emite un mensaje Heartbeat de manera periódica, según el parámetro "Producer Heartbeat Time". Los nodos encargados de supervisar este mensaje (Heartbeat Consumer) generan un evento Heartbeat si el mensaje no se recibe en el tiempo configurado (Consumer Heartbeat Time).

Objeto 1018h: Identity Object

Descripción

Este objeto contiene información general acerca del equipo.

El Vendor ID es el identificador del fabricante (subíndice 1h).

El código de producto (Product code) necesita una versión específica del codificador (subíndice 2h).

El número de versión (Revision number) específico del fabricante está compuesto por un número de versión mayor y uno menor (subíndice 3h).

El número de versión mayor indica las evoluciones de las funciones CANopen. El número de versión menor indica la evolución de las funciones propias del equipo:

31 16	15 0)
Número de versión mayor	Número de versión menor	
Palabra más significativa	Palabra menos significativa	

El número de serie (Serial number) identifica el equipo (subíndice 4h).

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de entradas	UNSIGNED8	4h	ro	no	no
1 h	Vendor ID	UNSIGNED32	0700005A h	ro	no	no
2 h	Product code	UNSIGNED32	1602D h	ro	no	no
3 h	Revision number	UNSIGNED32	00010001 h	ro	no	no
4 h	Serial number	UNSIGNED32	XXXXXXX: Individual según la producción	ro	no	no

Objeto 1200h: Server SDO Parameter

Descripción

Este objeto contiene los identificadores de los mensajes para la comunicación mediante SDO.

Características del objeto

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	2 h	ro	no	no
1 h	Cliente hacia Servidor	UNSIGNED32	600 h + Node ID	ro	no	no
2 h	Servidor hacia Cliente	UNSIGNED32	580 h + Node ID	ro	no	no

Objeto 1800h: 1st Transmit PDO communication Parameter

Descripción

Este objeto contiene los parámetros de comunicación para el PDO en modo de transmisión.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de uNSIGNED8 5 ro subíndice		no	posible		
1 h	COB-ID	UNSIGNED32	180 h + Node ID	rw	no	posible
2 h	Modo de transmisión	UNSIGNED8	FE h (254 d)	rw	no	posible
3 h	Inibit time	UNSIGNED32	0	rw	no	posible
4 h	No disponible		-	-	-	
5 h	Event timer	UNSIGNED32	0	rw	no	posible

Modo de transmisión

Es posible configurar el modo de transmisión PDO, tal como se describe en la tabla que aparece a continuación.

Code	Modo de	transmisiór	1			Observaciones	
transfert (decimal)	Cíclico	Acíclico	Síncrono	Asíncrono	Sólo RTR		
0		х	x			Envío del PDO en el primer mensaje Sync en función de un evento.	
1240	х		х			Envío del PDO cada n (n = 0-240) mensajes Sync	
241251	Reservad	0				-	
252			х		x	Actualización de los datos inmediatamente después de la Remote Request y emisión del PDO al próximo SYNC	
253				х	х	Actualización de los datos y envío del PDO en Remote Request	

Code	Modo de	transmisiór	l	Observaciones		
transfert (decimal)	Cíclico	Acíclico	o Síncrono Asíncrono Sólo RTR		Sólo RTR	
254				х		Envío del PDO en el evento específico del fabricante
255				х		Envío del PDO en el evento específico del codificador

Estructura de COB-ID

La estructura de un COB-ID para CAN2.0A se detalla en la tabla siguiente:

N.° de bit	Valor	Significado
31 (MSB)	0	El objeto de PDO existe.
	1	El objeto de PDO no existe.
30	0	Mecanismo RTR autorizado
	1	Mecanismo RTR no autorizado
29	0	11-Bit ID (CAN 2.0A)
28 - 11	0	Si bit 29 = 0
10 - 0 (LSB)	Х	Bit 10 - 0 del identificador

Inhibit Time (subíndice 3)

En el caso de "Transmitir PDO", "inhibit time" para las transmisiones de PDO puede introducirse en este campo de 16 bits. Tras un cambio de datos, el transmisor de PDO comprueba si un "inhibit time" ha caducado tras la última transmisión. Es posible efectuar una nueva transmisión de PDO únicamente si "inhibit time" ha transcurrido. "Inhibit time" resulta útil durante una transmisión asíncrona (transmisión en modo 254 d, 255 d), ya que permite evitar sobrecargas en el bus CAN. "Inhibit time" es múltiplo de 100 μ s del objeto 1800 subíndice 03.

La tabla siguiente presenta varios ejemplos de valores.

Valor	Tiempo en ms
0000 h	0
64 h	10
3E8 h	100
1388 h	500
2710 h	1000
FFFF h	6553

Event Timer (subíndice 5)

"Event timer" sólo funciona en modo de transmisión asíncrona (transmisión en modo 254 d, 255 d). Si los datos cambian antes de que "event timer" caduque, se envía un telegrama temporal. Si un valor > 0 está escrito en este campo de 16 bits, el TPDO siempre se transmite después de la caducidad de "event timer". El valor escrito en el objeto 1800 subíndice 05 corresponde a "event timer" en ms. Cuando "event timer" caduca, la transferencia de datos tiene lugar aunque no se haya realizado ningún cambio de datos.

Objeto 1801h: 2nd Transmit PDO communication Parameter

Descripción

Este objeto contiene los parámetros de comunicación para el segundo PDO en modo de transmisión.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	5	ro	no	sí
1 h	COB-ID	UNSIGNED32	280 h + Node ID	rw	no	sí
2 h	Modo de transmisión	UNSIGNED8	1 h	rw	no	sí
3 h	Inibit time	UNSIGNED16	0	rw	no	sí
4 h	No disponible	-	-	-	-	-
5 h	Event timer	UNSIGNED16	0	rw	no	sí

Modo de transmisión

Es posible configurar el modo de transmisión PDO, tal como se describe en la tabla que aparece a continuación.

Código de	Modo de transmisión					Observaciones	
transferencia (decimal)	Cíclico	Acíclico	Síncrono	Asíncrono	Sólo RTR		
0		х	x			Envío del PDO en el primer mensaje Sync en función de un evento.	
1 a 240	x		х			Envío del PDO cada n (n = 0-240) mensajes Sync	
241 a 251	Reservado					-	
252			x		х	Actualización de los datos inmediatamente después de la Remote Request y emisión del PDO al próximo SYNC	
253					х	Actualización de los datos y envío del PDO en Remote Request	

Código de	Modo de transmisión					Observaciones
transferencia (decimal)	Cíclico	Acíclico	Síncrono	Asíncrono	Sólo RTR	
254				х		Envío del PDO en el evento específico del fabricante
255				х		Envío del PDO en el evento específico del codificador

Inhibit Time (subíndice 3)

En el caso de "Transmitir PDO", "inhibit time" para las transmisiones de PDO puede introducirse en este campo de 16 bits. Tras un cambio de datos, el transmisor de PDO comprueba si un "inhibit time" ha caducado tras la última transmisión. Es posible efectuar una nueva transmisión de PDO únicamente si "inhibit time" ha transcurrido. "Inhibit time" resulta útil durante una transmisión asíncrona (transmisión en modo 254 d, 255 d), ya que permite evitar sobrecargas en el bus CAN. "Inhibit time" es múltiplo de 100 μ s del objeto 1801 subíndice 03.

La tabla siguiente presenta varios ejemplos de valores.

Valor	Tiempo en ms
0000 h	0
64 h	10
3E8 h	100
1388 h	500
2710 h	1000
FFFF h	6553

Event Timer (subíndice 5)

"Event timer" sólo funciona en modo de transmisión asíncrona (transmisión en modo 254 d, 255 d). Si los datos cambian antes de que "event timer" caduque, se envía un telegrama temporal. Si un valor > 0 está escrito en este campo de 16 bits, el TPDO siempre se transmite después de la caducidad de "event timer". El valor escrito en 1801 subíndice 05 corresponde a "event timer" en ms. La transferencia de datos tiene lugar incluso si no se ha producido ningún cambio de datos.

Objeto 1A00h: 1st Transmit PDO Mapping Parameter

Descripción

Este objeto permite describir los objetos que transportará el PDO.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	1	rw	no	sí
1 h	Primer objeto del PDO	UNSIGNED32	60040020 h	rw	no	sí

Estructura del campo de datos

Cada dato que se va a transportar se representa de la manera siguiente:

Bits	31 a 16	15 a 8	7 a 0
Datos	Número de índice del objeto que se va a transportar	Número de subíndice del objeto que se va a transportar	Tamaño del objeto que se va a transportar
Ejemplo	6004 h	00 h	20 h

NOTA: El tamaño total de los datos transportados por el PDO es de 8 bytes como máximo.

Objeto 1A01h: 2nd Transmit PDO Mapping Parameter

Descripción

Este objeto permite describir los objetos que transportará el PDO.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de subíndice	UNSIGNED8	1	rw	no	sí
1 h	Primer objeto del PDO	UNSIGNED32	60040020 h	rw	no	sí

Estructura del campo de datos

Cada dato que se va a transportar se representa de la manera siguiente:

Bits	31 a 16	15 a 8	7 a 0
Datos	Número de índice del objeto que se va a transportar	Número de subíndice del objeto que se va a transportar	Tamaño del objeto que se va a transportar
Ejemplo	6004 h	00 h	20 h

NOTA: El tamaño total de los datos transportados por el PDO es de 8 bytes como máximo.

\$182690200 04/2011 73

5.2 Objetos específicos del fabricante de 2000h a 5FFFh

Objeto 5FFFh: SED Data Object

Descripción

Este objeto contiene el nombre del fabricante, así como la clase de conformidad de Transparent Ready.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de entradas	Unsigned 8	2	ro	No	-
1 h	Fabricante	VISIBLE_STRING	Telemecanique	Constante	No	-
2 h	Clase de conformidad	VISIBLE_STRING	S10	Constante	No	-

5.3 Objetos específicos del codificador de 6000h a 9FFFh (DS 406)

Introducción

En esta sección se muestra una lista de los objetos específicos del codificador. Cada objeto se describe según la norma CANopen con todas sus características técnicas.

Contenido de esta sección

Esta sección contiene los siguientes apartados:

Objeto	Descripción	Tipo de datos	Atributo	Página
6000h	Operating Parameters	Unsigned 16	RW	76
6001h	Measuring Units per revolution	Unsigned 32	RW	78
6002h	Total measuring range in measuring units	Unsigned 32	RW	80
6003h	Preset Value	Unsigned 32	RW	82
6004h	Position Value	Unsigned 32	ROMAP	83
6200h	Cyclic Timer	Unsigned 16	RO	84
6500h	Operating Status	Unsigned 16	RO	87
6501h	Singleturn Resolution	Unsigned 32	RO	88
6502h	Number of distinguishable Revolutions	Unsigned 16	RO	88
6503h	Alarms	Unsigned 16	RO	89
6504h	Supported Alarms	Unsigned 16	RO	90
6505h	Warnings	Unsigned 16	RO	91
6506h	Supported Warnings	Unsigned 16	RO	92
6507h	Profile and Software Version	Unsigned 32	RO	93
6508h	Operating Time	Unsigned 32	RO	93
6509h	Offset Value	Integer 32	RO	94
650Ah	Module identification	Integer 32	RO	94
650Bh	Serial Number	Unsigned 32	RO	95

Objeto 6000h: Operating parameters

Presentación

La secuencia de código (Complemento) se puede elegir como parámetro de funcionamiento.

CMS	Índice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	6000h	4h	0h - 5h	Sin signo 16

Bit	Función	Bit = 0	Bit = 1	Servicio
0	Sentido de medida angular	Sentido horario	Sentido inverso	Disponible
1	Control de diagnóstico	Inhibido	Validado	No disponible
2 *	Función de escalonado	Inhibido	Validado	Disponible
3	Sentido de medida lineal	Adelante	Atrás	N/A
411	Reservados			N/A
12	Función específica del fabricante	-	-	N/A
13	Función específica del fabricante	-	-	N/A
14	Función específica del fabricante	-	-	N/A
15	Función específica del fabricante	-	-	N/A

^{*} Si el bit n. $^{\circ}$ 2 = 0, entonces los objetos 6001h y 6002h no están operativos.

Descripción general de los parámetros

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índice		Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (rx)		Carga	60001	า		Byte 4	Byte 5		
1100 b	1-89 d	22	60	00	00	Х	00		

X: Sentido deseado

La secuencia de código (Complemento) determina el sentido de contaje en el que el valor del proceso de salida aumenta o disminuye. La secuencia de código está determinada por el bit 0 en el índice 6000h:

Bit 0	Secuencia de código	Código
0	Sentido horario	Creciente CW
1	Sentido antihorario	Decreciente CCW

Cuando la transmisión es correcta, el codificador responde mediante un mensaje de confirmación:

FC	NN	Control	Índice		Subíndice	Datos de	Datos de servicio/Datos de proceso			
SDO (tx)		Carga	60001	า		Byte 4	Byte 5	Byte 6	Byte 7	
1011 b	1-89 d	60	60	00	00	00	00	00	00	

Ejemplo

Objetivo: Codificador rotativo absoluto en el sentido CCW, decreciente.

Matriz de bits:

Bit 0 = 1 (Sentido decreciente (CCW))

Resultado de matriz de bits X = 01h

Número del nodo NN = 01

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índic	е	Subíndice	Datos de s	ervicio/Dato	s de proces	0
	Carga	60001	า		Byte 4	Byte 5		
601	22	60	00	00	01	00		

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índic	е	Subíndice	Datos de s	ervicio/Dato	s de proces	0
	Carga	60001	h		Byte 4	Byte 5	Byte 6	Byte 7
581	60	60	00	00	00	00	00	00

Objeto 6001h: Measuring Units per revolution

Presentación

El parámetro Resolución por revolución se utiliza para programar el número de pasos deseado por revolución. Elija un valor comprendido entre 1 y 8.192:

CMS	Índice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	6001h	-	0h - 2000h	Sin signo 32

Descripción general de los parámetros

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índic	е	Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (rx)		Carga	6001			Byte 4	Byte 5	Byte 6	Byte 7
1100 b	1-89 d	22	60	01	00	Х	Х	00	00

X: Resolución por revolución deseada (< 13 bits)

Si el valor deseado sobrepasa al de la resolución del codificador, el código no se transmitirá. Por consiguiente, es importante que el parámetro esté incluido en la horquilla de valores posibles.

Cuando la transmisión es correcta, el codificador responde mediante un mensaje de confirmación:

FC	NN	Control	Índic	е	Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (tx)		Carga	6001h			Byte 4	Byte 5	Byte 6	Byte 7
1011 b	1-89 d	60	60	01	00	00	00	00	00

Ejemplo de programación

Ejemplo de programación: Resolución por revolución

Objetivo: Codificador rotativo absoluto con 4.096 pasos por revolución.

Resolución por revolución: 4.096 pasos = 1000 h

Número del nodo NN = 01

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índice		Subíndice	Datos de s	ervicio/Dato	rvicio/Datos de proceso		
	Carga	60011	า		Byte 4	Byte 5	Byte 6	Byte 7	
601	22	60	01	00	00	10	00	00	

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índic	е	Subíndice	Datos de servicio/Datos de proceso				
	Carga	60011	า		Byte 4	Byte 5	Byte 6	Byte 7	
581	60	60	01	00	00	00	00	00	

Objeto 6002h: Total measuring range in measuring units

Presentación

Este parámetro se utiliza para programar el número deseado de unidades de medida entre el conjunto global de medidas. Este valor no debe sobrepasar el de la resolución total del codificador rotativo absoluto, impreso en la placa de identificación del codificador:

CMS	Índice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	6002h	2000000h	0h - 2000000h	Sin signo 32

Atención:

Se utilizarán las combinaciones de letras siguientes.

- PGA: Resolución total física del codificador
- PAU: Resolución física por revolución
- **GA**: Resolución total (parámetro de cliente)
- AU: Resolución por revolución (parámetro de cliente)

Si la resolución deseada por revolución es inferior a la resolución física real por revolución del codificador, entonces la resolución total debe ser como se indica a continuación:

Resolución total: GA = (PGA*AU)/PAU, con AU ≤ PAU

Si la resolución total del codificador es inferior a la resolución física total, la resolución de los parámetros debe ser múltiplo de la resolución física total:

k = PGA/GA, siendo k un número entero

Descripción general de los parámetros

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índic	е	Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (rx)		Carga	60021	า		Byte 4	Byte 5	Byte 6	Byte 7
1100 b	1-89 d	22	60	02	00	X	X	X	X

X: Resolución por revolución deseada (> 15 bits)

Cuando la transmisión es correcta, el codificador responde mediante un mensaje de confirmación:

FC	NN	Control	Índic	е	Subíndice	Datos de servicio/Datos de proceso				
SDO (tx)		Carga	6002h			Byte 4	Byte 5	Byte 6	Byte 7	
1011 b	1-89 d	60	60	02	00	00	00	00	00	

Ejemplo de programación

Objetivo: Codificador rotativo absoluto con una resolución total de 24 bits.

Una resolución total de 24 bits es la equivalente a 1000000h.

Número de nodo NN = 1

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índice		Subíndice	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	
	Carga	6002l	า		Byte 4	Byte 4 Byte 5 Byte 6 Byte		
601	22	60	02	00	00	00	00	01

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índic	е	Subíndice	Datos de s	ervicio/Dato	s de proces	0
	Carga	60021	h		Byte 4 Byte 5 Byte 6 Byte 6		Byte 7	
581	60	60	02	00	00	00	00	00

Objeto 6003h: Preset Value

Presentación

El valor preajustado es el valor de la posición deseada que se debe alcanzar en un determinado lugar físico del eje. El valor de posición se fija como valor de proceso deseado por el preajuste de los parámetros.

Para evitar los errores de duración de ejecución, el valor preajustado no debe sobrepasar la resolución total de los parámetros.

CMS	Índice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	6003h	0h	0h - resolución total	Sin signo 32

Descripción general de los parámetros

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índic	е	Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (rx)		Carga	6003h			Byte 4	Byte 5	Byte 6	Byte 7
1100 b	1-89 d	22	60	03	00	Х	Х	Х	X

X: Valor deseado preajustado

Cuando la transmisión es correcta, el codificador responde mediante un mensaje de confirmación como el siguiente:

FC	NN	Control	Índic	е	Subíndice	Datos de	servicio/D	atos de pr	oceso
SDO (tx)		Carga	6003h			Byte 4	Byte 5	Byte 6	Byte 7
1011 b	1-89 d	60	60	03	00	00	00	00	00

Ejemplo de programación

Objetivo: Codificador rotativo absoluto con valor preajustado a 0

El valor preajustado a 0 equivale a X = 0h

Número del nodo NN = 1

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índice		Subíndice	Datos de s	ervicio/Dato	s de proces	o
	Carga	6003h			Byte 4	Byte 5	Byte 6	Byte 7
601	22	60	03	00	00	00	00	00

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índice		Subíndice	Datos de servicio/Datos de proceso				
	Carga	6003			Byte 4	Byte 5	Byte 6	Byte 7	
581	60	60	03	00	00	00	00	00	

Objeto 6004h: Position Value

Descripción

Este objeto permite definir la posición del codificador.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predetermina do	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 32	-	ROMAP	Opcional	No

Objeto 6200h: Cyclic Timer

Modo cíclico

El codificador rotativo absoluto transmite de forma cíclica (sin ser solicitado por el ordenador principal) el valor de proceso en curso. La duración del ciclo se puede programar en milisegundos; los valores van de 1 ms a 65.535 ms. (Por ejemplo: 64h = 100 ms).

CMS	Índice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	6200h	0h	0h - 10000h	Sin signo 16

Descripción general de los parámetros:

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índic	е	Subíndice	Datos de	Datos de servicio/Datos de proceso				
SDO (rx)		Carga	62001	h		Byte 4	Byte 5	Byte 6	Byte 7		
1100 b	1-89 d	22	62	00	00	Х	Х	00	00		

X: Duración de ciclo deseada

Codificador rotativo absoluto hacia el maestro: (Confirmación)

FC	NN	Control	Índic	е	Subíndice	Datos de servicio/Datos de proceso				
SDO (tx)		Carga	62001	h		Byte 4	Byte 5	Byte 6	Byte 7	
1011 b	1-89 d	60	62	00	00	00	00	00	00	

Desactivar el modo cíclico

Para desactivar el modo cíclico del codificador rotativo absoluto, envíe el mensaje siguiente (desactivación del modo cíclico):

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índice		Subíndice	Datos de servicio/Datos de proceso				
	Carga	6200			Byte 4	Byte 5	Byte 6	Byte 7	
601	22	62	00	00	00	00	00	00	

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índice		Subíndic	Datos de servicio/Datos de proceso				
				е					
	Carga	6200			Byte 4	Byte 5	Byte 6	Byte 7	
581	60	62	62 00		00	00	00	00	

Modo SYNC

Después de haber recibido el telegrama SYNC enviado por el ordenador principal, el codificador rotativo absoluto envía el valor de posición en curso. Si varios nodos están programados en modo SYNC, responden según su COB-ld. La programación de un tiempo de desfase no es aplicable.

También se pueden programar diversos mensajes SYNC ignorados:

CMS	Índice	Subíndice	Valor predeterminado	Horquilla de valores	Longitud de los datos
SDO	1801	2h	1h	1h - 100h	Sin signo 8

Descripción general de los parámetros:

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

FC	NN	Control	Índic	е	Subíndice	Datos de servicio/Datos de proceso			
SDO (rx)		Carga	1801	h	2h	Byte 4	Byte 5	Byte 6	Byte 7
1100 b	1-89 d	22	18	01	02	Х	00	00	00

X: Número de mensajes SYNC tras los cuales el codificador envía el valor de proceso.

Codificador rotativo absoluto hacia el maestro: (Confirmación)

FC	NN	Control	Índic	е	Subíndice	Datos de servicio/Datos de proceso				
SDO (tx)		Carga	1801h		2h	Byte 4	Byte 5	Byte 6	Byte 7	
1011 b	1-89 d	60	18	01	02	00	00	00	00	

Como el modo cíclico, el modo SYNC también se puede desactivar siguiendo el mismo procedimiento. Para la desactivación, el PDO 2 se debe enviar con el índice 1802h.

Ejemplo: Número de mensajes SYNC

Objetivo: Codificador rotativo absoluto con 3 mensajes SYNC

Número de mensajes SYNC: X = 03h

Número del nodo: NN = 01 d

Maestro hacia el codificador rotativo absoluto. (Configuración de parámetro)

COB-ID	Control	Índice		Subíndice	Subíndice Datos de servicio/Datos de proceso					
	Carga	1801h		2h	Byte 4	Byte 5	Byte 6	Byte 7		
601	22	18	01	02	03	00	00	00		

Codificador rotativo absoluto hacia el maestro: (Confirmación)

COB-ID	Control	Índice Subíndice Datos de servicio/Datos de proces			0			
	Carga	1801h		2h	Byte 4	Byte 5	Byte 6	Byte 7
581	60	18	01	02	00	00	00	00

Modo directivo

Por medio de un mensaje de demanda de transmisión a distancia, el ordenador principal conectado solicita el valor de proceso actual. El codificador rotativo absoluto lee el valor de posición en curso, calcula, si es necesario, los parámetros de ajuste y envía el valor de proceso obtenido utilizando el mismo COB-ID. El codificador utiliza el PDO (rx) con el código de función 001 para transmitir el valor de posición.

Este tipo de modo de transmisión sólo se debe utilizar en modo operativo.

CMS	Bit Petición de transmisión a distancia (RTR)	Longitud de los datos
PDO	1	0

Objeto 6500h Operating Status

Descripción

Este objeto contiene el estado operativo del codificador. Proporciona información sobre los parámetros internos del codificador.

Valores

Los valores de este objeto se muestran en la tabla siguiente:

Bit	Función	Valor = 0	Valor = 1	C1	C2
0	Code Sequence	CW	CCW	Obligatorio	Obligatorio
1	Commissioning Diagnostic Control	No admitido	Admitido	Opcional	Opcional
2	Scaling function control	Desactivado	Activado	Opcional	Obligatorio
3	Measuring direction	CW	CCW	Opcional	Opcional
411	Reservado			·	
12	Función específica del fabricante	Desactivado	Activado	Opcional	Opcional
13	Función específica del fabricante	Desactivado	Activado	Opcional	Opcional
14	Función específica del fabricante	Desactivado	Activado	Opcional	Opcional
15	Función específica del fabricante	Desactivado	Activado	Opcional	Opcional

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6501h: Singleturn Resolution (Rotary)

Descripción

Este objeto indica el número de pasos por revolución en función de la posición del codificador. La resolución máxima del codificador es de 2¹³.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 32	-	ro	No	No

Objeto 6502h: Number of Distinguishable Revolutions

Descripción

Este objeto indica el número de revoluciones que puede efectuar el codificador. El número máximo de revoluciones del codificador es de 2¹²

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6503h: Alarms

Descripción

Este objeto contiene los distintos mensajes de alarma. Se visualizará una alarma si un fallo de funcionamiento del codificador provoca un error de posición. El bit de alarma se mantiene activado hasta que la alarma sea validada y el codificador pueda proporcionar un valor de posición correcto.

Valores

Los valores de este objeto se muestran en la tabla siguiente:

Bit	Función	Valor = 0	Valor = 1	C1	C2
0	Position error	No	Sí	Opcional	Opcional
1 Commissioning diagnostics		No admitido	Admitido	-	-
211	Reservado	,	<u>'</u>		
12	Alarma específica del fabricante	Desactivado	Activado	Opcional	Opcional
13	Alarma específica del fabricante	Desactivado	Activado	Opcional	Opcional
14	Alarma específica del fabricante	Desactivado	Activado	Opcional	Opcional
15	Alarma específica del fabricante	Desactivado	Activado	Opcional	Opcional

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6504h: Supported Alarms

Descripción

Este objeto indica las alarmas admitidas por el codificador.

Valores

Los valores de este objeto se muestran en la tabla siguiente:

Bit	Función	Valor = 0	Valor = 1
0	Position error	No	Sí
1 Commissioning diagnostics		No	Sí
211	Reservado		
12	Alarma específica del fabricante	No	Sí
13	Alarma específica del fabricante	No	Sí
14	Alarma específica del fabricante	No	Sí
15	Alarma específica del fabricante	No	Sí

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6505h: Warnings

Descripción

Este objeto indica si se han sobrepasado las tolerancias de ciertos parámetros internos del codificador.

Valores

Los valores de este objeto se muestran en la tabla siguiente:

Bit	Función	Valor = 0	Valor = 1	C1	C2
0	Position error	No	Sí	Opcional	Opcional
1	Light control reserve	No alcanzado	Error	Opcional	Opcional
2	CPU watchdog status	Aceptar	Reset	Opcional	Opcional
3	Operating time limit warning	No	Sí	Opcional	Opcional
4	Battery charge	Aceptar	Demasiado lento	Opcional	Opcional
5	Reference point	Alcanzado	No alcanzado	Opcional	Opcional
611	Reservado		1	1	
12	Advertencia específica del fabricante	N/A	N/A	Opcional	Opcional
13	Advertencia específica del fabricante	N/A	N/A	Opcional	Opcional
14	Advertencia específica del fabricante	N/A	N/A	Opcional	Opcional
15	Advertencia específica del fabricante	N/A	N/A	Opcional	Opcional

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6506h: Supported Warnings

Descripción

Este objeto indica las advertencias admitidas por el codificador.

Valores

Los valores de este objeto se muestran en la tabla siguiente:

Bit	Función	Valor = 0	Valor = 1
0	Frequency exceeded	No admitido	Admitido
1	Light control reserve	No admitido	Admitido
2	CPU watchdog status	No admitido	Admitido
3	Operating time Ilimit warning	No admitido	Admitido
4	Battery charge	No admitido	Admitido
5	Reference point	No admitido	Admitido
611	Reservado		
12	Advertencia específica del fabricante	No admitido	Admitido
13	Advertencia específica del fabricante	No admitido	Admitido
14	Advertencia específica del fabricante	No admitido	Admitido
15	Advertencia específica del fabricante	No admitido	Admitido

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 16	-	ro	No	No

Objeto 6507h: Profile and Software Version

Descripción

Este objeto indica la versión del perfil de hardware así como la versión del software del codificador.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 32	-	ro	No	No

Objeto 6508h: Operating Time

Descripción

Este objeto indica el tiempo de utilización del codificador. El tiempo de utilización se almacena en la memoria EEPROM mientras el codificador está en tensión.

Esta función ya no está disponible para este codificador. El valor asignado es FFFFFFFh.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 32	FFFFFFh	ro	No	Sí

Objeto 6509h: Offset Value

Descripción

Este objeto indica el valor de compensación. El valor de compensación se calcula mediante la función Preset value (véase *Objeto 6003h: Preset Value, página 82*) y luego lo utiliza el codificador para desplazar el valor de posición.

El valor de compensación se guarda y se puede leer en el codificador.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	-	Unsigned 32	-	ro	No	No

Objeto 650Ah: Module Identification

Descripción

Este objeto indica el valor de compensación de fabricante, así como el valor de posición mínimo y máximo.

El valor de compensación se almacena en el subíndice 1.

Los valores de posición mínimo y máximo se almacenan respectivamente en los subíndices 2 y 3.

Características

Las características de este objeto se muestran en la tabla siguiente:

Subíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0 h	Número de entradas	Unsigned 32	-	ro	No	No
1 h	Valor de compensación de fabricante	Unsigned 32	Oh	ro	No	No
2 h	Valor de posición mínimo de fabricante	Unsigned 32	0 h	ro	No	No
3 h	Valor de posición máximo de fabricante	Unsigned 32	1FFFFFF h	ro	No	No

Objeto 650Bh: Serial Number

Descripción

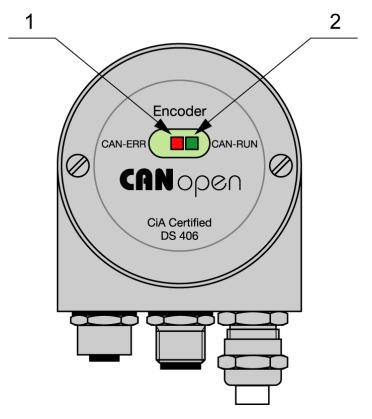
Este objeto indica el número de serie del codificador.

Características

Las características de este objeto se muestran en la tabla siguiente:

S	ubíndice	Descripción	Tipo de datos	Valor predeterminado	Acceso	Mapping PDO	Copia de seguridad realizada
0	h	-	Unsigned 32	-	ro	No	No

Indicación de estado suministrada por los LED en el nivel del soporte de conexión


Principio

En el soporte se encuentran dos LED, que indican el estado del codificador en la red CANopen.

El LED rojo CAN ERR indica los errores y el LED verde CAN RUN indica el estado del codificador.

Descripción

LED del soporte de conexión:

N.°	Descripción
1	LED ROJO
2	LED VERDE

Tabla de estado de los LED para el diagnóstico según DR 303-3 V1.2:

N.°	LED	Tipo de parpadeo	Estado/Causa posible
1	CAN ERR	Apagado	Sin errores.
2	(rojo)	1 parpadeo	El nivel del contador de error interno ha alcanzado o rebasado el nivel máximo.
3		2 parpadeos	Detección de un evento de tipo "protección" o de un "heartbeat".
4		3 parpadeos	Error de sincronización: mensaje no recibido en el período definido.
5		Parpadeo	Error en la dirección o en la velocidad del bus.
6		Encendido	Bus apagado.
7	CAN RUN	1 parpadeo	Módulo en modo Parado.
8	(verde)	Intermitente	Módulo en modo preoperativo.
9		Encendido	Módulo en modo operativo.

Cuando los dos LED están apagados, el codificador no está alimentado.

Apéndices

Preguntas más frecuentes

Preguntas más frecuentes

Problema	Causa posible	Solución posible
Después de la puesta en tensión, el codificador no responde.	El bus está activo, pero el codificador instalado no responde al mensaje de activación del maestro.	 Apague el autómata. Corte la alimentación del codificador. Retire el soporte del codificador. Controle la velocidad en baudios utilizando los dos conmutadores rotativos. Vuelva a colocar el soporte. Vuelva a conectar la alimentación del codificador. Vuelva a poner el autómata en tensión.
Durante la transmisión, hay errores en el valor de posición.	Durante la transmisión del valor de posición, pueden producirse anomalías. El bus CAN puede estar en modo apagado de forma temporal. Los mensajes transmitidos serán erróneos.	Verifique que cada extremo del bus termine en una terminación de final de línea (véase <i>Terminación de línea</i> , página 18). Si el último nodo del bus es un codificador, la terminación de final de línea estará colocada en el soporte y se activará mediante un interruptor.
Demasiadastramas de ERROR	El bus está sobrecargado por demasiadas tramas de ERROR.	Compruebe que todos los nodos estén configurados a la misma velocidad. Si uno de los nodos tiene una velocidad diferente, corrija esa velocidad (véase Velocidad de transmisión, página 17). Si un nodo está mal configurado, generará automáticamente tramas de error.

Glosario

Α

APV

Valor de posición absoluta.

Archivo EDS

Archivo estandarizado que contiene la descripción de los parámetros y de los medios de comunicación del equipo asociado.

В

Byte

Unidad de datos de 8 bits = 1 byte.

C

CAL

Capa de aplicaciones CAN.

CAN

Controller Area Network o red multiplexada CAN.

CANopen

Capa de aplicaciones de una red industrial basada en el bus CAN.

CCW

Sentido inverso o antihorario de las agujas del reloj (del inglés Counter-ClockWise).

CiA

CAN In Automation, organización que agrupa a los fabricantes y usuarios de equipos que funcionan sobre el bus CAN.

COB

Objeto elemental de comunicación en la red CAN. Todos los datos se transfieren por medio de un COB.

COB-ID

Identificador COB. Identifica un objeto en una red. El identificador fija la prioridad de emisión de ese objeto. El COB-ID está compuesto por un código de función y un número de nodo.

CW

Sentido horario de las agujas del reloj (del inglés ClockWise).

D

Dirección

Número asignado a cada nodo, ya sea un maestro o un esclavo. La dirección del codificador (no volátil) se configura en el soporte con conmutadores rotativos.

Ε

Esclavo

Nodo de bus que envía datos a petición del maestro. Los codificadores rotativos absolutos siempre son esclavos.

F

FC

Código de función. Permite determinar el tipo de mensaje enviado mediante la red CAN.

L

LMT

Objeto encargado de la gestión de la red.

Permite configurar los parámetros de cada capa en el CAN.

M

Maestro

Dispositivo "activo" dentro de la red, que puede enviar datos sin haber recibido solicitud. Controla el intercambio de datos y la gestión de la comunicación.

Ν

NMT

Objeto encargado de la gestión de la red.

Se encarga de la gestión de la ejecución, de la configuración y de los errores en una red CAN.

NN

Número de nodo.

Nodo de bus

Dispositivo que puede enviar o recibir datos, así como amplificarlos, mediante el bus.

Ρ

PCV

Valor de proceso.

PDO

Objeto de comunicación con prioridad alta para transmitir los datos de proceso.

Preguntas más frecuentes

Foro para preguntas.

P۷

Valor predeterminado: valor de configuración.

R

RO

Sólo lectura: parámetro accesible solamente para lectura.

ROMAP

Sólo lectura asignable: parámetro que se puede consultar mediante el PDO.

RW

Lectura/Escritura: parámetro accesible para lectura y escritura.

S

SDO

Objeto de comunicación con prioridad baja para la mensajería (configuración, gestión de errores, diagnóstico).

SyCon

Herramienta de software que posee una interfaz uniforme y homogénea en Windows dedicada a la configuración de redes industriales y al ajuste de equipos. Los archivos de descripción (GSD, EDS, etc.) se utilizan mediante esta herramienta.

T

Terminación de línea

Resistencia que termina los segmentos principales del bus.

Velocidad en baudios

Velocidad de transmisión en número de bits por segundo.

wo

Sólo escritura: parámetro accesible solamente para escritura.

Índice

Α

Accesorios, 22 Archivo EDS, 29

В

Byte de control, 31

C

Cableado del bus y de la alimentación, 19 Cableado del codificador, 21 Características ambientales, 25 Características eléctricas, 25 Características mecánicas, 25 COB-ID, 30 Conexión de la alimentación al soporte de conexión, 21 Conexión del soporte al bus, 21 Configuración de los codificadores, 29

D

Desactivar el modo cíclico, *84* Descripción, *16* Dirección del nodo, *18*

G

Guard time, 59

I

Índice/Subíndice, 32 Instrucciones de montaje, 22

L

Life Time Factor, 59 Lista de accesorios, 22

M

Modo cíclico, 84 Modo de transmisión, 84 Modo directivo, 86 Modo operativo, 33 Modo SYNC, 85 Modo: Arrancar, 34 Modo: Preoperativo, 33 Modo: STOP, 34

P

Parámetros de funcionamiento, 76

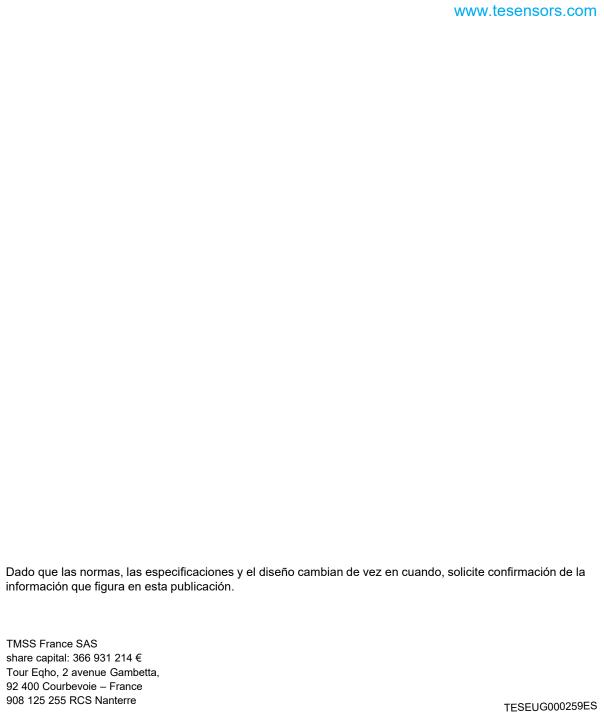
R

Rango de medida total en unidades de medida, 80 Reinicialización del codificador rotativo absoluto, 33

S

Soporte de conexión, 16

Т


Terminación de línea, 18 Transmisión de datos CANopen, 30 Transmisión de la posición actual, 34

U

Unidades de medida por revolución, 78

V

Valor de Preset, 82 Velocidad de transmisión, 17

